
Introduction to OpenACC

John Urbanic
Parallel Computing Scientist

Pittsburgh Supercomputing Center

Copyright 2017

What is OpenACC?

It is a directive based standard to allow developers to

take advantage of accelerators such as GPUs from

NVIDIA and AMD, Intel's Xeon Phi, FPGAs, and even DSP

chips.

Directives

Program myscience

... serial code ...

!$acc kernels

do k = 1,n1

do i = 1,n2

... parallel code ...

enddo

enddo

!$acc end kernels

...

End Program myscience

CPU GPU

Your original

Fortran or C code

OpenACC

Compiler

Hint

Simple compiler hints from coder.

Compiler generates parallel

threaded code.

Ignorant compiler just sees some

comments.

Familiar to OpenMP Programmers

main() {

double pi = 0.0; long i;

#pragma omp parallel for reduction(+:pi)

for (i=0; i<N; i++)

{

double t = (double)((i+0.05)/N);

pi += 4.0/(1.0+t*t);

}

printf(“pi = %f\n”, pi/N);

}

CPU

OpenMP

main() {

double pi = 0.0; long i;

#pragma acc kernels

for (i=0; i<N; i++)

{

double t = (double)((i+0.05)/N);

pi += 4.0/(1.0+t*t);

}

printf(“pi = %f\n”, pi/N);

}

CPU GPU

OpenACC

More on this later!

How Else Would We Accelerate Applications?

Applications

Libraries

“Drop-in”

Acceleration

Programming

Languages

(CUDA)

OpenACC

Directives

Maximum

Flexibility

Incrementally

Accelerate

Applications

Key Advantages Of This Approach

High-level. No involvement of OpenCL, CUDA, etc.

Single source. No forking off a separate GPU code. Compile the same program for

accelerators or serial; non-GPU programmers can play along.

Efficient. Experience shows very favorable comparison to low-level implementations

of same algorithms.

Performance portable. Supports GPU accelerators and co-processors from multiple

vendors, current and future versions.

Incremental. Developers can port and tune parts of their application as resources

and profiling dictates. No wholesale rewrite required. Which can be quick.

True Standard

Full OpenACC 1.0 and 2.0 and now 2.5 specifications available online

http://www.openacc-standard.org

Quick reference card also available and useful

Implementations available now from PGI, Cray, CAPS and GCC.

GCC version of OpenACC in 5.x, but use 6.x

Best free option is very probably PGI Community version:

http://www.pgroup.com/products/community.htm

Sunway TaihuLight

#1 Top 500, June

2016

NEW PLATFORMS
GROWING

COMMUNITY

 6,000+ enabled
developers

 Hackathons constantly

 Diverse online
community

 Five of 13 CAAR

codes using

OpenACC

 Gaussian ported to

Tesla with OpenACC

 FLUENT using

OpenACC in R18

production release

PORTING
SUCCESS

Serious Adoption

A Few Cases
Reading DNA nucleotide sequences

Shanghai JiaoTong University

Designing circuits for quantum
computing

UIST, Macedonia

Extracting image features in real-
time

Aselsan

1 week

40x faster

3 directives

4.1x faster

HydroC- Galaxy Formation

PRACE Benchmark Code, CAPS

Real-time Derivative Valuation

Opel Blue, Ltd

Matrix Matrix Multiply

Independent Research
Scientist

Few hours

70x faster

4 directives

6.4x faster

4 directives

16x faster

1 week

3x faster

A Champion Case

S3D: Fuel Combustion

Design alternative fuels with
up to 50% higher efficiencyTitan

10 days

Jaguar

42 days

Modified <1%
Lines of Code

4x Faster

15 PF! One of fastest

simulations ever!

subroutine saxpy(n, a, x, y)
real :: x(:), y(:), a
integer :: n, i

!$acc kernels
do i=1,n

y(i) = a*x(i)+y(i)
enddo

!$acc end kernels
end subroutine saxpy

...
$ From main program
$ call SAXPY on 1M elements
call saxpy(2**20, 2.0, x_d, y_d)
...

void saxpy(int n,

float a,

float *x,

float *restrict y)

{

#pragma acc kernels

for (int i = 0; i < n; ++i)

y[i] = a*x[i] + y[i];

}

...

// Somewhere in main

// call SAXPY on 1M elements

saxpy(1<<20, 2.0, x, y);

...

A Simple Example: SAXPY

SAXPY in C SAXPY in Fortran

kernels: Our first OpenACC Directive

We request that each loop execute as a separate kernel on the GPU.

This is an incredibly powerful directive.

!$acc kernels

do i=1,n

a(i) = 0.0

b(i) = 1.0

c(i) = 2.0

end do

do i=1,n

a(i) = b(i) + c(i)

end do

!$acc end kernels

kernel 1

kernel 2

Kernel:
A parallel routine to

run on the GPU

General Directive Syntax and Scope

Fortran

!$acc kernels [clause …]
structured block

!$acc end kernels

C

#pragma acc kernels [clause …]
{

structured block

}

I may indent the directives at the natural code indentation level for readability. It is a

common practice to always start them in the first column (ala #define/#ifdef). Either is fine

with C or Fortran 90 compilers.

Complete SAXPY Example Code

#include <stdlib.h>

void saxpy(int n,

float a,

float *x,

float *restrict y)

{

#pragma acc kernels

for (int i = 0; i < n; ++i)

y[i] = a * x[i] + y[i];

}

int main(int argc, char **argv)

{

int N = 1<<20; // 1 million floats

if (argc > 1)

N = atoi(argv[1]);

float *x = (float*)malloc(N * sizeof(float));

float *y = (float*)malloc(N * sizeof(float));

for (int i = 0; i < N; ++i) {

x[i] = 2.0f;

y[i] = 1.0f;

}

saxpy(N, 3.0f, x, y);

return 0;

}

“I promise y is not aliased by

Anything else (esp. x)”

C Detail: the restrict keyword

Standard C (as of C99).

Important for optimization of serial as well as OpenACC and OpenMP code.

Promise given by the programmer to the compiler for a pointer

float *restrict ptr

Meaning: “for the lifetime of ptr, only it or a value directly derived from it (such as ptr + 1) will be

used to access the object to which it points”

Limits the effects of pointer aliasing

OpenACC compilers often require restrict to determine independence

Otherwise the compiler can’t parallelize loops that access ptr

Note: if programmer violates the declaration, behavior is undefined

Compile and Run

C: pgcc –acc -ta=tesla,cuda8.0 -Minfo=accel saxpy.c

Fortran: pgf90 –acc -ta=tesla,cuda8.0 -Minfo=accel saxpy.f90

Compiler Output

cc -acc -Minfo=accel saxpy.c

saxpy:

8, Generating copyin(x[:n-1])

Generating copy(y[:n-1])

Generating compute capability 1.0 binary

Generating compute capability 2.0 binary

9, Loop is parallelizable

Accelerator kernel generated

9, #pragma acc loop worker, vector(256) /* blockIdx.x threadIdx.x */

CC 1.0 : 4 registers; 52 shared, 4 constant, 0 local memory bytes; 100% occupancy

CC 2.0 : 8 registers; 4 shared, 64 constant, 0 local memory bytes; 100% occupancy

Run: a.out

Compare: Partial CUDA C SAXPY Code
Just the subroutine

__global__ void saxpy_kernel(float a, float* x, float* y, int n){

int i;

i = blockIdx.x*blockDim.x + threadIdx.x;

if(i <= n) x[i] = a*x[i] + y[i];

}

void saxpy(float a, float* x, float* y, int n){

float *xd, *yd;

cudaMalloc((void**)&xd, n*sizeof(float));

cudaMalloc((void**)&yd, n*sizeof(float)); cudaMemcpy(xd, x, n*sizeof(float),

cudaMemcpyHostToDevice);

cudaMemcpy(yd, y, n*sizeof(float),

cudaMemcpyHostToDevice);

saxpy_kernel<<< (n+31)/32, 32 >>>(a, xd, yd, n);

cudaMemcpy(x, xd, n*sizeof(float),

cudaMemcpyDeviceToHost);

cudaFree(xd); cudaFree(yd);

}

Compare: Partial CUDA Fortran SAXPY Code
Just the subroutine

module kmod
use cudafor

contains
attributes(global) subroutine saxpy_kernel(A,X,Y,N)
real(4), device :: A, X(N), Y(N)
integer, value :: N
integer :: i
i = (blockidx%x-1)*blockdim%x + threadidx%x
if(i <= N) X(i) = A*X(i) + Y(i)
end subroutine

end module

subroutine saxpy(A, X, Y, N)
use kmod
real(4) :: A, X(N), Y(N)
integer :: N
real(4), device, allocatable, dimension(:):: &

Xd, Yd
allocate(Xd(N), Yd(N))
Xd = X(1:N)
Yd = Y(1:N)
call saxpy_kernel<<<(N+31)/32,32>>>(A, Xd, Yd, N)
X(1:N) = Xd
deallocate(Xd, Yd)
end subroutine

Again: Complete SAXPY Example Code

#include <stdlib.h>

void saxpy(int n,

float a,

float *x,

float *restrict y)

{

#pragma acc kernels

for (int i = 0; i < n; ++i)

y[i] = a * x[i] + y[i];

}

int main(int argc, char **argv)

{

int N = 1<<20; // 1 million floats

if (argc > 1)

N = atoi(argv[1]);

float *x = (float*)malloc(N * sizeof(float));

float *y = (float*)malloc(N * sizeof(float));

for (int i = 0; i < N; ++i) {

x[i] = 2.0f;

y[i] = 1.0f;

}

saxpy(N, 3.0f, x, y);

return 0;

}

Entire Subroutine

Main Code

Big Difference!

With CUDA, we changed the structure of the old code. Non-CUDA

programmers can’t understand new code. It is not even ANSI standard code.

We have separate sections for the host code and the GPU code. Different flow

of code. Serial path now gone forever.

Where did these “32”s and other mystery numbers come from? This is a clue

that we have some hardware details to deal with here.

Exact same situation as assembly used to be. How much hand-assembled code

is still being written in HPC now that compilers have gotten so efficient?

This looks easy! Too easy…

If it is this simple, why don’t we just throw kernel in front of every loop?

Better yet, why doesn’t the compiler do this for me?

The answer is that there are two general issues that prevent the compiler from being

able to just automatically parallelize every loop.

Data Dependencies in Loops

Data Movement

The compiler needs your higher level perspective (in the form of directive hints) to

get correct results and reasonable performance.

Data Dependencies

Most directive based parallelization consists of splitting up big do/for loops into

independent chunks that the many processors can work on simultaneously.

Take, for example, a simple for loop like this:

for(index=0, index<1000000,index++)

Array[index] = 4 * Array[index];

When run on 1000 processors, it will execute something like this…

for(index=0, index<999,index++)

Array[index] = 4*Array[index];

Processor

1

for(index=1000, index<1999,index++)

Array[index] = 4*Array[index];

Processor

2

for(index=2000, index<2999,index++)

Array[index] = 4*Array[index];

Processor

3

for(index=3000, index<3999,index++)

Array[index] = 4*Array[index];

Processor

4

for(index=4000, index<4999,index++)

Array[index] = 4*Array[index];

Processor

5 ….

No Data Dependency

Data Dependency

But what if the loops are not entirely independent?

Take, for example, a similar loop like this:

for(index=1, index<1000000,index++)

Array[index] = 4 * Array[index] – Array[index-1];

This is perfectly valid serial code.

Data Dependency

Now Processor 2, in trying to calculate its first iteration…

for(index=1000, index<1999,index++)

Array[1000] = 4 * Array[1000] – Array[999];

needs the result of Processor 1’s last iteration. If we want the correct (“same

as serial”) result, we need to wait until processor 1 finishes. Likewise for

processors 3, 4, …

Data Dependencies

That is a data dependency. If the compiler even suspects that there is a data

dependency, it will, for the sake of correctness, refuse to parallelize that loop.

11, Loop carried dependence of 'Array' prevents parallelization

Loop carried backward dependence of 'Array' prevents vectorization

As large, complex loops are quite common in HPC, especially around the most

important parts of your code, the compiler will often balk most when you most

need a kernel to be generated. What can you do?

Data Dependencies

Rearrange your code to make it more obvious to the compiler that there

is not really a data dependency.

Eliminate a real dependency by changing your code.

There is a common bag of tricks developed for this as this issue goes

back 40 years in HPC. Many are quite trivial to apply.

The compilers have gradually been learning these themselves.

Override the compiler’s judgment (independent clause) at the risk of

invalid results. Misuse of restrict has similar consequences.

Our Foundation Exercise: Laplace Solver

I’ve been using this for MPI, OpenMP and now OpenACC. It is a great simulation problem, not rigged for OpenACC.

In this most basic form, it solves the Laplace equation: 𝛁𝟐𝒇(𝒙, 𝒚) = 𝟎
The Laplace Equation applies to many physical problems, including:

Electrostatics

Fluid Flow

Temperature

For temperature, it is the Steady State Heat Equation:

Metal

Plate

Heating

Element

Initial Conditions Final Steady State

Metal

Plate

Exercise Foundation: Jacobi Iteration

The Laplace equation on a grid states that each grid point is the average of it’s

neighbors.

We can iteratively converge to that state by repeatedly computing new values at

each point from the average of neighboring points.

We just keep doing this until the difference from one pass to the next is small

enough for us to tolerate.

A(i,j) A(i+1,j)A(i-1,j)

A(i,j-1)

A(i,j+1)

𝐴𝑘+1 𝑖, 𝑗 =
𝐴𝑘(𝑖 − 1, 𝑗) + 𝐴𝑘 𝑖 + 1, 𝑗 + 𝐴𝑘 𝑖, 𝑗 − 1 + 𝐴𝑘 𝑖, 𝑗 + 1

4

Serial Code Implementation

for(i = 1; i <= ROWS; i++) {
for(j = 1; j <= COLUMNS; j++) {

Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +
Temperature_last[i][j+1] + Temperature_last[i][j-1]);

}
}

do j=1,columns
do i=1,rows

temperature(i,j)= 0.25 * (temperature_last(i+1,j)+temperature_last(i-1,j) + &
temperature_last(i,j+1)+temperature_last(i,j-1))

enddo
enddo

while (dt > MAX_TEMP_ERROR && iteration <= max_iterations) {

for(i = 1; i <= ROWS; i++) {
for(j = 1; j <= COLUMNS; j++) {

Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +
Temperature_last[i][j+1] + Temperature_last[i][j-1]);

}
}

dt = 0.0;

for(i = 1; i <= ROWS; i++){
for(j = 1; j <= COLUMNS; j++){

dt = fmax(fabs(Temperature[i][j]-Temperature_last[i][j]), dt);
Temperature_last[i][j] = Temperature[i][j];

}
}

if((iteration % 100) == 0) {
track_progress(iteration);

}

iteration++;

}

Serial C Code (kernel)

Calculate

Update

temp

array and

find max

change

Output

Done?

void initialize(){

int i,j;

for(i = 0; i <= ROWS+1; i++){
for (j = 0; j <= COLUMNS+1; j++){

Temperature_last[i][j] = 0.0;
}

}

// these boundary conditions never change throughout run

// set left side to 0 and right to a linear increase
for(i = 0; i <= ROWS+1; i++) {

Temperature_last[i][0] = 0.0;
Temperature_last[i][COLUMNS+1] = (100.0/ROWS)*i;

}

// set top to 0 and bottom to linear increase
for(j = 0; j <= COLUMNS+1; j++) {

Temperature_last[0][j] = 0.0;
Temperature_last[ROWS+1][j] = (100.0/COLUMNS)*j;

}
}

Serial C Code Subroutines

void track_progress(int iteration) {

int i;

printf("-- Iteration: %d --\n", iteration);
for(i = ROWS-5; i <= ROWS; i++) {

printf("[%d,%d]: %5.2f ", i, i,Temperature[i][i]);
}
printf("\n");

}

BCs could run from 0

to ROWS+1 or from 1

to ROWS. We chose

the former.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <sys/time.h>

// size of plate
#define COLUMNS 1000
#define ROWS 1000

// largest permitted change in temp (This value takes about 3400 steps)
#define MAX_TEMP_ERROR 0.01

double Temperature[ROWS+2][COLUMNS+2]; // temperature grid
double Temperature_last[ROWS+2][COLUMNS+2]; // temperature grid from last iteration

// helper routines
void initialize();
void track_progress(int iter);

int main(int argc, char *argv[]) {

int i, j; // grid indexes
int max_iterations; // number of iterations
int iteration=1; // current iteration
double dt=100; // largest change in t
struct timeval start_time, stop_time, elapsed_time; // timers

printf("Maximum iterations [100-4000]?\n");
scanf("%d", &max_iterations);

gettimeofday(&start_time,NULL); // Unix timer

initialize(); // initialize Temp_last including boundary conditions

// do until error is minimal or until max steps
while (dt > MAX_TEMP_ERROR && iteration <= max_iterations) {

// main calculation: average my four neighbors
for(i = 1; i <= ROWS; i++) {

for(j = 1; j <= COLUMNS; j++) {
Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +

Temperature_last[i][j+1] + Temperature_last[i][j-1]);
}

}

dt = 0.0; // reset largest temperature change

// copy grid to old grid for next iteration and find latest dt
for(i = 1; i <= ROWS; i++){

for(j = 1; j <= COLUMNS; j++){
dt = fmax(fabs(Temperature[i][j]-Temperature_last[i][j]), dt);
Temperature_last[i][j] = Temperature[i][j];

}
}

// periodically print test values
if((iteration % 100) == 0) {

track_progress(iteration);
}

iteration++;
}

Whole C Code

gettimeofday(&stop_time,NULL);
timersub(&stop_time, &start_time, &elapsed_time); // Unix time subtract routine

printf("\nMax error at iteration %d was %f\n", iteration-1, dt);
printf("Total time was %f seconds.\n", elapsed_time.tv_sec+elapsed_time.tv_usec/1000000.0);

}

// initialize plate and boundary conditions
// Temp_last is used to to start first iteration
void initialize(){

int i,j;

for(i = 0; i <= ROWS+1; i++){
for (j = 0; j <= COLUMNS+1; j++){

Temperature_last[i][j] = 0.0;
}

}

// these boundary conditions never change throughout run

// set left side to 0 and right to a linear increase
for(i = 0; i <= ROWS+1; i++) {

Temperature_last[i][0] = 0.0;
Temperature_last[i][COLUMNS+1] = (100.0/ROWS)*i;

}

// set top to 0 and bottom to linear increase
for(j = 0; j <= COLUMNS+1; j++) {

Temperature_last[0][j] = 0.0;
Temperature_last[ROWS+1][j] = (100.0/COLUMNS)*j;

}
}

// print diagonal in bottom right corner where most action is
void track_progress(int iteration) {

int i;

printf("---------- Iteration number: %d ------------\n", iteration);
for(i = ROWS-5; i <= ROWS; i++) {

printf("[%d,%d]: %5.2f ", i, i, Temperature[i][i]);
}
printf("\n");

}

do while (dt > max_temp_error .and. iteration <= max_iterations)

do j=1,columns
do i=1,rows

temperature(i,j)=0.25*(temperature_last(i+1,j)+temperature_last(i-1,j)+ &
temperature_last(i,j+1)+temperature_last(i,j-1))

enddo
enddo

dt=0.0

do j=1,columns
do i=1,rows

dt = max(abs(temperature(i,j) - temperature_last(i,j)), dt)
temperature_last(i,j) = temperature(i,j)

enddo
enddo

if(mod(iteration,100).eq.0) then
call track_progress(temperature, iteration)

endif

iteration = iteration+1

enddo

Serial Fortran Code (kernel)

Calculate

Update

temp

array and

find max

change

Output

Done?

subroutine initialize(temperature_last)
implicit none

integer, parameter :: columns=1000
integer, parameter :: rows=1000
integer :: i,j

double precision, dimension(0:rows+1,0:columns+1) :: temperature_last

temperature_last = 0.0

!these boundary conditions never change throughout run

!set left side to 0 and right to linear increase
do i=0,rows+1

temperature_last(i,0) = 0.0
temperature_last(i,columns+1) = (100.0/rows) * i

enddo

!set top to 0 and bottom to linear increase
do j=0,columns+1

temperature_last(0,j) = 0.0
temperature_last(rows+1,j) = ((100.0)/columns) * j

enddo

end subroutine initialize

Serial Fortran Code Subroutines

subroutine track_progress(temperature, iteration)
implicit none

integer, parameter :: columns=1000
integer, parameter :: rows=1000
integer :: i,iteration

double precision, dimension(0:rows+1,0:columns+1) :: temperature

print *, '---------- Iteration number: ', iteration, ' ---------------'
do i=5,0,-1

write (*,'("("i4,",",i4,"):",f6.2," ")',advance='no'), &
rows-i,columns-i,temperature(rows-i,columns-i)

enddo
print *

program serial
implicit none

!Size of plate
integer, parameter :: columns=1000
integer, parameter :: rows=1000
double precision, parameter :: max_temp_error=0.01

integer :: i, j, max_iterations, iteration=1
double precision :: dt=100.0
real :: start_time, stop_time

double precision, dimension(0:rows+1,0:columns+1) :: temperature, temperature_last

print*, 'Maximum iterations [100-4000]?'
read*, max_iterations

call cpu_time(start_time) !Fortran timer

call initialize(temperature_last)

!do until error is minimal or until maximum steps
do while (dt > max_temp_error .and. iteration <= max_iterations)

do j=1,columns
do i=1,rows

temperature(i,j)=0.25*(temperature_last(i+1,j)+temperature_last(i-1,j)+ &
temperature_last(i,j+1)+temperature_last(i,j-1))

enddo
enddo

dt=0.0

!copy grid to old grid for next iteration and find max change
do j=1,columns

do i=1,rows
dt = max(abs(temperature(i,j) - temperature_last(i,j)), dt)
temperature_last(i,j) = temperature(i,j)

enddo
enddo

!periodically print test values
if(mod(iteration,100).eq.0) then

call track_progress(temperature, iteration)
endif

iteration = iteration+1

enddo

call cpu_time(stop_time)

print*, 'Max error at iteration ', iteration-1, ' was ',dt
print*, 'Total time was ',stop_time-start_time, ' seconds.'

end program serial

Whole Fortran Code

! initialize plate and boundery conditions
! temp_last is used to to start first iteration
subroutine initialize(temperature_last)

implicit none

integer, parameter :: columns=1000
integer, parameter :: rows=1000
integer :: i,j

double precision, dimension(0:rows+1,0:columns+1) :: temperature_last

temperature_last = 0.0

!these boundary conditions never change throughout run

!set left side to 0 and right to linear increase
do i=0,rows+1

temperature_last(i,0) = 0.0
temperature_last(i,columns+1) = (100.0/rows) * i

enddo

!set top to 0 and bottom to linear increase
do j=0,columns+1

temperature_last(0,j) = 0.0
temperature_last(rows+1,j) = ((100.0)/columns) * j

enddo

end subroutine initialize

!print diagonal in bottom corner where most action is
subroutine track_progress(temperature, iteration)

implicit none

integer, parameter :: columns=1000
integer, parameter :: rows=1000
integer :: i,iteration

double precision, dimension(0:rows+1,0:columns+1) :: temperature

print *, '---------- Iteration number: ', iteration, ' ---------------'
do i=5,0,-1

write (*,'("("i4,",",i4,"):",f6.2," ")',advance='no'), &
rows-i,columns-i,temperature(rows-i,columns-i)

enddo
print *

end subroutine track_progress

Exercises: General Instructions for Compiling

Exercises are in the “Exercises/OpenACC” directory in your home

directory

Solutions are in the “Solutions” subdirectory

To compile

pgcc –acc -ta=tesla,cuda8.0 laplace.c

pgf90 –acc -ta=tesla,cuda8.0 laplace.f90

This will generate the executable a.out

Exercises: Very useful compiler option

Adding –Minfo=accel to your compile command will give you some very useful information about

how well the compiler was able to honor your OpenACC directives.

[urbanic@gpu017 Solutions]$ pgcc -acc -ta=tesla,cuda8.0 -Minfo=accel laplace_acc.c
main:

59, Generating create(Temperature[:][:])
Generating copy(Temperature_last[:][:])

64, Loop is parallelizable
65, Loop is parallelizable

Accelerator kernel generated
Generating Tesla code
64, #pragma acc loop gang, vector(4) /* blockIdx.y threadIdx.y */
65, #pragma acc loop gang, vector(32) /* blockIdx.x threadIdx.x */

75, Loop is parallelizable
76, Loop is parallelizable

Accelerator kernel generated
Generating Tesla code
75, #pragma acc loop gang, vector(4) /* blockIdx.y threadIdx.y */
76, #pragma acc loop gang, vector(32) /* blockIdx.x threadIdx.x */
77, Generating implicit reduction(max:dt)

85, Generating update self(Temperature[:][:])

Special Instructions for Running on the GPUs

(during this workshop)

As mentioned, on Bridges you generally only have to use the queueing system

when you want to. However, as we have hundreds of you wanting quick

turnaround, we will have to use it today.

Once you have an a.out that you want to run, you should use the simple job that

we have already created (in Exercises/OpenACC) for you to run:

fred@br003$ sbatch gpu.job

Output From Your Batch Job

The machine will tell you it submitted a batch job, and you can await your

output, while will come back in a file with the corresponding number as a

name:

slurm-138555.out

As everything we are doing this afternoon only requires a few minutes at

most (and usually just seconds), you could just sit there and wait for the file

to magically appear. At which point you can “more” it or review it with

your editor.

Changing Things Up

If you get impatient, or want to see what the machine us up to, you can

look at the situation with squeue.

You might wonder what happened to the interaction count that the user is

prompted for. I stuck a reasonable default (4000 iterations) into the job

file. You can edit it if you want to. The whole job file is just a few lines.

Congratulations, you are now a Batch System veteran. Welcome to

supercomputing.

Exercise 1: Using kernels to parallelize the main loops
(About 20 minutes)

Q: Can you get a speedup with just the kernels directives?

1. Edit laplace_serial.c/f90

1. Maybe copy your intended OpenACC version to laplace_acc.c to start

2. Add directives where it helps

2. Compile with OpenACC parallelization

1. pgcc -acc -ta=tesla,cuda8.0 –Minfo=accel laplace_acc.c or

pgf90 -acc -ta=tesla,cuda8.0 –Minfo=accel laplace_acc.f90

2. Look at your compiler output to make sure you are having an effect

3. Run

1. sbatch gpu.job (Leave it at 4000 iterations if you want a solution that converges to current tolerance)

2. Look at output in file that returns (something like slurm-138555.out)

3. Compare the serial and your OpenACC version for performance difference

Exercise 1 C Solution

while (dt > MAX_TEMP_ERROR && iteration <= max_iterations) {

#pragma acc kernels
for(i = 1; i <= ROWS; i++) {

for(j = 1; j <= COLUMNS; j++) {
Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +

Temperature_last[i][j+1] + Temperature_last[i][j-1]);
}

}

dt = 0.0; // reset largest temperature change

#pragma acc kernels
for(i = 1; i <= ROWS; i++){

for(j = 1; j <= COLUMNS; j++){
dt = fmax(fabs(Temperature[i][j]-Temperature_last[i][j]), dt);
Temperature_last[i][j] = Temperature[i][j];

}
}

if((iteration % 100) == 0) {
track_progress(iteration);

}

iteration++;
}

Generate a GPU kernel

Generate a GPU kernel

Exercise 1 Fortran Solution
do while (dt > max_temp_error .and. iteration <= max_iterations)

!$acc kernels
do j=1,columns

do i=1,rows
temperature(i,j)=0.25*(temperature_last(i+1,j)+temperature_last(i-1,j)+ &

temperature_last(i,j+1)+temperature_last(i,j-1))
enddo

enddo
!$acc end kernels

dt=0.0

!$acc kernels
do j=1,columns

do i=1,rows
dt = max(abs(temperature(i,j) - temperature_last(i,j)), dt)
temperature_last(i,j) = temperature(i,j)

enddo
enddo
!$acc end kernels

if(mod(iteration,100).eq.0) then
call track_progress(temperature, iteration)

endif

iteration = iteration+1

enddo

Generate a GPU kernel

Generate a GPU kernel

Exercise 1: Compiler output (C)

[urbanic@gpu047]$ pgcc -acc -Minfo=accel -ta=tesla,cuda8.0 laplace_bad_acc.c
main:

62, Generating implicit copyin(Temperature_last[:][:])
Generating implicit copyout(Temperature[1:1000][1:1000])

63, Loop is parallelizable
64, Loop is parallelizable

Accelerator kernel generated
Generating Tesla code
63, #pragma acc loop gang, vector(4) /* blockIdx.y threadIdx.y */
64, #pragma acc loop gang, vector(32) /* blockIdx.x threadIdx.x */

73, Generating implicit copyin(Temperature[1:1000][1:1000])
Generating implicit copy(Temperature_last[1:1000][1:1000])

74, Loop is parallelizable
75, Loop is parallelizable

Accelerator kernel generated
Generating Tesla code
74, #pragma acc loop gang, vector(4) /* blockIdx.y threadIdx.y */
75, #pragma acc loop gang, vector(32) /* blockIdx.x threadIdx.x */
76, Generating implicit reduction(max:dt)

Compiler was able to

parallelize

Compiler was able to

parallelize

while (dt > MAX_TEMP_ERROR && iteration <= max_iterations) {
#pragma acc kernels
for(i = 1; i <= ROWS; i++) {

for(j = 1; j <= COLUMNS; j++) {
Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +

Temperature_last[i][j+1] + Temperature_last[i][j-1]);
}

}

dt = 0.0;

#pragma acc kernels
for(i = 1; i <= ROWS; i++){

for(j = 1; j <= COLUMNS; j++){
dt = fmax(fabs(Temperature[i][j]-Temperature_last[i][j]), dt);
Temperature_last[i][j] = Temperature[i][j];

}
}

.

.
iteration++;

}

First, about that “reduction”

Exiting this loop,

each processor has

a different idea of

what the max dt is.

With kernel the compiler recognizes

this and does a reduction, a very

convenient thing. We can get too

sophisticated for this autoscoping to

happen.

loop reduction (max:dt)

This explicitly declares the

reduction.

Exercise 1: Performance
3372 steps to convergence

Execution Time (s) Speedup

CPU Serial 18 --

CPU 2 OpenMP threads 9.4 1.99

CPU 4 OpenMP threads 4.7 3.98

CPU 8 OpenMP threads 2.5 7.48

CPU 16 OpenMP threads 1.4 13.4

CPU 28 OpenMP threads 0.9 21.5

OpenACC GPU 36 0.5x

What’s with the OpenMP?

We can compare our GPU results to the best the multi-core CPUs can do.

If you are familiar with OpenMP, or even if you are not, you can compile and run the

OpenMP enabled versions in your OpenMP directory as:

pgcc –mp laplace_omp.c or pgf90 -mp laplace_omp.f90

then to run on 8 threads do:

export OMP_NUM_THREADS=8

a.out

Note that you probably only have 8 real cores if you are still on a GPU node. Do

something like “interact –n28” if you want a full node of cores.

What went wrong?
export PGI_ACC_TIME=1 to activate profiling and run again:

Accelerator Kernel Timing data
/home/urbanic/laplace_bad_acc.c

main NVIDIA devicenum=0
time(us): 12,095,531
62: compute region reached 3372 times

64: kernel launched 3372 times
grid: [32x250] block: [32x4]
device time(us): total=127,989 max=48 min=37 avg=37

elapsed time(us): total=241,221 max=1,407 min=61 avg=71
62: data region reached 6744 times

62: data copyin transfers: 3372
device time(us): total=2,446,765 max=972 min=712 avg=725

70: data copyout transfers: 3372
device time(us): total=2,098,635 max=835 min=616 avg=622

73: compute region reached 3372 times
73: data copyin transfers: 3372

device time(us): total=32,465 max=71 min=6 avg=9
75: kernel launched 3372 times

grid: [32x250] block: [32x4]
device time(us): total=179,342 max=63 min=52 avg=53

elapsed time(us): total=294,686 max=407 min=76 avg=87
75: reduction kernel launched 3372 times

grid: [1] block: [256]
device time(us): total=50,490 max=23 min=14 avg=14

elapsed time(us): total=137,910 max=549 min=34 avg=40
75: data copyout transfers: 3372

device time(us): total=60,080 max=266 min=13 avg=17
73: data region reached 6744 times

73: data copyin transfers: 6744
device time(us): total=5,004,411 max=1,005 min=716 avg=742

82: data copyout transfers: 3372
device time(us): total=2,095,354 max=854 min=616 avg=621

2.4 seconds

2.0 seconds
0.3 seconds

0.2 seconds

0.1 seconds
5.0 seconds

2.0 seconds

Basic Concept
Simplified, but sadly true

PCI Bus GPU

GPU Memory

CPU

CPU Memory

Multiple Times Each Iteration

PCI Bus

CPU Memory GPU Memory

CPU GPU

A(i,j) A(i+1,j)A(i-1,j)
A(i,j-1)

A(i+1,j)

A(i,j) A(i+1,j)A(i-1,j)

A(i,j-1)

A(i+1,j)

A(i,j) A(i+1,j)A(i-1,j)

A(i,j-1)

A(i+1,j)

Excessive Data Transfers
while (dt > MAX_TEMP_ERROR && iteration <= max_iterations) {

#pragma acc kernels
for(i = 1; i <= ROWS; i++) {

for(j = 1; j <= COLUMNS; j++) {
Temperature[i][j] = 0.25 * (Temperature_old[i+1][j] + …

}
}

Temperature, Temperature_old

resident on host

Temperature, Temperature_old

resident on host

Temperature, Temperature_old

resident on device

Temperature, Temperature_old

resident on device
4 copies happen

every iteration of

the outer while

loop!

#pragma acc kernels
for(i = 1; i <= ROWS; i++) {

for(j = 1; j <= COLUMNS; j++) {
Temperature[i][j] = 0.25 * (Temperature_old[i+1][j] + …

}
}

Temperature, Temperature_old

resident on host

Temperature, Temperature_old

resident on host

Temperature, Temperature_old

resident on device

Temperature, Temperature_old

resident on device

}

dt = 0.0;

Data Management

The First, Most Important, and Possibly Only OpenACC Optimization

Data Construct Syntax and Scope

Fortran

!$acc data [clause …]

structured block

!$acc end data

C

#pragma acc data [clause …]

{

structured block

}

Data Clauses

copy(list) Allocates memory on GPU and copies data from host to GPU when

entering region and copies data to the host when exiting region.

Principal use: For many important data structures in your code, this

is a logical default to input, modify and return the data.

copyin(list) Allocates memory on GPU and copies data from host to GPU when

entering region.

Principal use: Think of this like an array that you would use as just

an input to a subroutine.

copyout(list) Allocates memory on GPU and copies data to the host when exiting

region.

Principal use: A result that isn’t overwriting the input data structure.

create(list) Allocates memory on GPU but does not copy.

Principal use: Temporary arrays.

Array Shaping

Compilers sometimes cannot determine the size of arrays, so we must specify

explicitly using data clauses with an array “shape”. The compiler will let you know

if you need to do this. Sometimes, you will want to for your own efficiency reasons.

C

#pragma acc data copyin(a[0:size]), copyout(b[s/4:3*s/4])

Fortran

!$acc data copyin(a(1:size)), copyout(b(s/4:3*s/4))

Fortran uses start:end and C uses start:length

Data clauses can be used on data, kernels or parallel

Compiler will (increasingly) often make a good guess…

int main(int argc, char *argv[]) {

int i;
double A[2000], B[1000], C[1000];

#pragma acc kernels
for (i=0; i<1000; i++){

A[i] = 4 * i;
B[i] = B[i] + 2;
C[i] = A[i] + 2 * B[i];

}
}

Smart

pgcc -acc -Minfo=accel loops.c
main:

6, Generating present_or_copyout(C[:])
Generating present_or_copy(B[:])
Generating present_or_copyout(A[:1000])
Generating NVIDIA code

7, Loop is parallelizable
Accelerator kernel generated

Smarter

Smartest

int main(int argc, char** argv){

float A[1000];

#pragma acc kernels

for(int iter = 1; iter < 1000 ; iter++){

A[iter] = 1.0;

}

A[10] = 2.0;

printf("A[10] = %f", A[10]);

}

Data Regions Have Real Consequences

Simplest Kernel With Global Data Region

Output:

A[10] = 2.0

int main(int argc, char** argv){

float A[1000];

#pragma acc kernels

for(int iter = 1; iter < 1000 ; iter++){

A[iter] = 1.0;

}

A[10] = 2.0;

printf("A[10] = %f", A[10]);

}

Output:

A[10] = 1.0

A[]

Copied

To GPU

A[]

Copied

To Host

Runs

On

Host

#pragma acc data copy(A)

{

}

A[]

Copied

To GPU

Still

Runs On

Host

A[]

Copied

To Host

int main(int argc, char** argv){

float A[1000];

#pragma acc kernels

for(int iter = 1; iter < 1000 ; iter++){

A[iter] = 1.0;

}

A[10] = 2.0;

printf("A[10] = %f", A[10]);

}

Data Regions Are Different Than Compute Regions

Output:

A[10] = 1.0

#pragma acc data copy(A)

{

}

Data

Region

Compute

Region

Data Movement Decisions

Much like loop data dependencies, sometime the compiler needs your human

intelligence to make high-level decisions about data movement. Otherwise, it

must remain conservative – sometimes at great cost.

You must think about when data truly needs to migrate, and see if that is better

than the default.

Besides the scope-based data clauses, there are OpenACC options to let us manage

data movement more intensely or asynchronously. We could manage the above

behavior with the update construct:

Fortran : C:
!$acc update [host(), device(), …] #pragma acc update [host(), device(), …]

Ex: #pragma acc update host(Temp_array) //Get host a copy from device

Exercise 2: Use acc data to minimize transfers
(about 40 minutes)

Q: What speedup can you get with data + kernels directives?

• Start with your Exercise 1 solution or grab laplace_bad_acc.c/f90 from the Solutions

subdirectory. This is just the solution of the last exercise.

• Add data directives where it helps.

• Think: when should I move data between host and GPU? Think how you would do it by

hand, then determine which data clauses will implement that plan.

• Hint: you may find it helpful to ignore the output at first and just concentrate on getting

the solution to converge quickly (at 3372 steps). Then worry about updating the printout.

Exercise 2 C Solution
#pragma acc data copy(Temperature_last), create(Temperature)
while (dt > MAX_TEMP_ERROR && iteration <= max_iterations) {

// main calculation: average my four neighbors
#pragma acc kernels
for(i = 1; i <= ROWS; i++) {

for(j = 1; j <= COLUMNS; j++) {
Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +

Temperature_last[i][j+1] + Temperature_last[i][j-1]);
}

}

dt = 0.0; // reset largest temperature change

// copy grid to old grid for next iteration and find latest dt
#pragma acc kernels
for(i = 1; i <= ROWS; i++){

for(j = 1; j <= COLUMNS; j++){
dt = fmax(fabs(Temperature[i][j]-Temperature_last[i][j]), dt);
Temperature_last[i][j] = Temperature[i][j];

}
}

// periodically print test values
if((iteration % 100) == 0) {

#pragma acc update host(Temperature)
track_progress(iteration);

}

iteration++;
}

No data movement in this

block.

Except once in a while

here.

Exercise 2 Fortran Solution
!$acc data copy(temperature_last), create(temperature)
do while (dt > max_temp_error .and. iteration <= max_iterations)

!$acc kernels
do j=1,columns

do i=1,rows
temperature(i,j)=0.25*(temperature_last(i+1,j)+temperature_last(i-1,j)+ &

temperature_last(i,j+1)+temperature_last(i,j-1))
enddo

enddo
!$acc end kernels

dt=0.0

!copy grid to old grid for next iteration and find max change
!$acc kernels
do j=1,columns

do i=1,rows
dt = max(abs(temperature(i,j) - temperature_last(i,j)), dt)
temperature_last(i,j) = temperature(i,j)

enddo
enddo
!$acc end kernels

!periodically print test values
if(mod(iteration,100).eq.0) then

!$acc update host(temperature)
call track_progress(temperature, iteration)

endif

iteration = iteration+1

enddo
!$acc end data

Keep these on GPI

Except bring back a copy

here

Extra efficient:

!$acc update host(temperature(columns-5:columns,rows-5:rows))

Exercise 2: Performance
3372 steps to convergence

Execution Time (s) Speedup

CPU Serial 18 --

CPU 2 OpenMP threads 9.4 1.99

CPU 4 OpenMP threads 4.7 3.98

CPU 8 OpenMP threads 2.5 7.48

CPU 16 OpenMP threads 1.4 13.4

CPU 28 OpenMP threads 0.9 21.5

OpenACC GPU 1.0 18

OpenACC or OpenMP?

Don’t draw any grand conclusions yet. We have gotten impressive

speedups from both approaches. But our problem size is pretty small.

Our main data structure is:

1000 x 1000 = 1M elements = 8MB of memory

We have 2 of these (temperature and temperature_last) so we are

using roughly 16 MB of memory. Not very large. When divided over

cores it gets even smaller and can easily fit into cache.

The algorithm is realistic, but the problem size is tiny and hence the

memory bandwidth stress is very low.

OpenACC or OpenMP on Larger Data?

We can easily scale this problem up, so why don’t I? Because it is nice to have exercises that finish

in a few minutes or less.

We scale this up to 10K x 10K (1.6 GB problem size) for the hybrid challenge. These numbers start

to look a little more realistic. But the serial code takes over 30 minutes to finish. That would have

gotten us off to a slow start!

Execution Time (s) Speedup

CPU Serial 2187 --

CPU 16 OpenMP threads 183 12

CPU 28 OpenMP threads 162 13.5

OpenACC 103 21

10K x 10K Problem Size

Obvious cusp for core

scaling appears

Latest Happenings In Data Management

Unified Memory

Unified address space allows us to pretend we have

shared memory

Skip data management, hope it works, and then

optimize if necessary

For dynamically allocated memory can eliminate need

for pointer clauses

NVLink

One route around PCI bus (with multiple GPUs)

Further speedups

OpenACC gives us even more detailed control over parallelization

Via gang, worker, and vector clauses

By understanding more about OpenACC execution model and GPU

hardware organization, we can get higher speedups on this code

By understanding bottlenecks in the code via profiling, we can

reorganize the code for higher performance

But you have already gained most of any potential speedup, and

you did it with a few lines of directives!

General Principles: Finding Parallelism In Code

Nested for/do loops are best for parallelization

Large loop counts are best

Iterations of loops must be independent of each other

To help compiler: restrict keyword (C), independent clause

Use subscripted arrays, rather than pointer-indexed arrays (C)

Data regions should avoid wasted transfers

If applicable, could use directives to explicitly control sizes

Various other annoying things can interfere with accelerated regions

IO

Limitations on function calls and nested parallelism (relaxed much in 2.0)

Is OpenACC Living Up To My Claims?

High-level. No involvement of OpenCL, CUDA, etc.

Single source. No forking off a separate GPU code. Compile the same program

for accelerators or serial; non-GPU programmers can play along.

Efficient. Experience shows very favorable comparison to low-level

implementations of same algorithms. kernels is magical!

Performance portable. Supports GPU accelerators and co-processors from

multiple vendors, current and future versions.

Incremental. Developers can port and tune parts of their application as

resources and profiling dictates. No wholesale rewrite required. Which can be

quick.

In Conclusion…

OpenMP

OpenACC

MPI

