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Targeting the Architecture

(But Not Admitting It)

Part of the awesomeness of OpenACC has been that you have been able to 

ignore the hardware specifics.  But, now that you know a little bit more 

about CUDA/GPU architecture, you might suspect that you can give the 

compiler still more help in optimizing.  In particular, you might know the 

hardware specifics of a particular model.  The compiler might only know 

which “family” it is compiling for (Fermi, Kepler, Pascal etc.).

Indeed, the OpenACC spec has methods to target architecture 

hierarchies, and not just GPUs (think Intel MIC).  Let’s see how they map 

to what we know about GPUs.



For example: Pascal



Software Hardware

Threads are executed by CUDA cores

Thread

CUDA

core

Thread Block
Multiprocessor (SM)

Thread blocks are executed on multiprocessors (SM)

 Thread blocks do not migrate

 Several concurrent thread blocks can reside on 

one multiprocessor - limited by multiprocessor 

resources (shared memory and register file)

...

Grid Device

A kernel is launched as a grid of thread blocks

CUDA Execution Model

Blocks and grids can be multi dimensional (x,y,z) 



Thread 

Block Multiprocessor

32 Threads

32 Threads

32 Threads

...

Warps

• A thread block consists of  one or more warps

• A warp is executed physically in parallel 

(SIMD) on a multiprocessor

• The SM creates, manages, schedules and 

executes threads at warp granularity

• All threads in a warp execute the same 

instruction. If threads of a warp diverge the 

warp serially executes each branch path 

taken.

• When a warp executes an instruction that 

accesses global memory it coalesces the 

memory accesses of the threads within the 

warp into as few transactions as possible

• Currently all NVIDIA GPUs use a warp size of 

32

=

Quantum of independence: Warps



Rapid Evolution
Fermi

GF100

Fermi

GF104

Kepler

GK104

Kepler

GK110

Maxwell

GM107

Pascal

GP100

Compute Capability 2.0 2.1 3.0 3.5 5.0 6.0

Threads / Warp 32 32 32 32 32 32

Max Warps / Multiprocessor 48 48 54 64 64 64

Max Threads / 

Multiprocessor
1536 1536 2048 2048 2048 2048

Max Thread Blocks / 

Multiprocessor
8 8 16 16 32 32

32‐bit Registers / 

Multiprocessor
32768 32768 65536 131072 65536 65536

Max Registers / Thread 63 63 63 255 255 255

Max Threads / Thread Block 1024 1024 1024 1024 1024 1024

Shared Memory Size 

Configurations
16k/48k 16k/48k 16k/32k/48k 16k/32k/48k 96k 64K

Max X Grid Dimension 2^16 2^16 2^32 2^32 2^32 2^32

Hyper‐Q No No No Yes Yes Yes

Dynamic Parallelism No No No Yes Yes Yes

• Do you want to have to keep 

up with this?

• Maybe the compiler knows 

more about this than you? Is 

that possible?

• CUDA programmers do have 

to worry about all of this, 

and much more.

• But doesn’t hurt much to try.



OpenACC Task Granularity
The OpenACC execution model has three levels: gang, worker and vector

This is supposed to map to any architecture that is a collection of Processing Elements (PEs) where each PE is 

multithreaded and each thread can execute vector instructions.

Worker

Gang Worker

Worker

Worker

Gang Worker

Worker

Vector

Vector

Vector

Vector

Vector

Vector



Targeting the Architecture

As we said, OpenACC  assumes a device will contain multiple processing elements 

(PEs) that run in parallel. Each PE also has the ability to efficiently perform 

vector-like operations. For NVIDIA GPUs, it is reasonable to think of a PE as a 

streaming multiprocessor (SM).  Then an OpenACC gang is a threadblock, a worker

is effectively a warp, and an OpenACC vector is a CUDA thread.  Phi, or similar 

Intel SMP architectures also map in a logical, but different, fashion.

Vector

Worker

Gang

GPU

Thread

Warp

SM

SMP (Phi)

SSE Vector

Core

CPU



Kepler, for example

Block Size Optimization:

32 thread wide blocks are good for Kepler, since warps are allocated by row first.

32 thread wide blocks will mean all threads in a warp are reading and writing contiguous pieces of 

memory

Coalescing  

Try to keep total threads in a block to be a multiple of 32 if possible

Non-multiples of 32 waste some resources & cycles

Total number of threads in a block: between 256 and 512 is usually a good number.

Grid Size Optimization:

Most people start with having each thread do one unit of work

Usually better to have fewer threads so that each thread could do multiple pieces of work.

What is the limit to how much smaller we can make the number of total blocks?

We still want to have at least as many threads as can fill the GPU many times over (for example 4 times). 

That means we need  at least 2880 x 15 x 4 = ~173,000 threads

Experiment by decreasing the number of threads



Mapping OpenACC to CUDA Threads and Blocks

#pragma acc kernels

for( int i = 0; i < n; ++i )

y[i] += a*x[i]; 

#pragma acc kernels loop gang(100) vector(128)

for( int i = 0; i < n; ++i ) 

y[i] += a*x[i];

#pragma acc parallel num_gangs(100) vector_length(128) 

{

#pragma acc loop gang vector

for( int i = 0; i < n; ++i ) y[i] += a*x[i];

}

100 thread blocks, each with 128 

threads, each thread executes one 

iteration of the loop.

100 thread blocks, each with 128 

threads, each thread executes one 

iteration of the loop, using parallel

16  blocks, 256 threads each.



SAXPY Returns For Some Fine Tuning

The default (will work OK):

#pragma acc kernels loop
for( int i = 0; i < n; ++i )

y[i] += a*x[i];

Some suggestions to the compiler:

#pragma acc kernels loop gang(100), vector(128)
for( int i = 0; i < n; ++i )

y[i] += a*x[i];

Specifies that the kernel will use 100 thread blocks, each with 128 threads, where each thread 

executes one iteration of the loop.  This beat the default by ~20% last time I tried…



Parallel Regions vs. Kernels

We have been using kernels thus far, to great effect.  However OpenACC allows us to very 

explicitly control the flow and allocation of tasks using parallel regions.

These approaches come from different backgrounds.

PGI Accelerator

Region*

OpenMP

parallel

OpenACC

kernels

OpenACC

parallel

*Similar philosophy to preferring OpenMP omp parallel for



Parallel Construct

Fortran
!$acc parallel [clause …]

structured block
!$acc end parallel

Clauses
if( condition )

async( expression )

num_gangs( expression )

num_workers( expression )

vector_length( expression )

C
#pragma acc parallel [clause …]

{ structured block }

private( list )

firstprivate( list )

reduction( operator:list )

.

.

Also any data clause



Parallel Clauses

num_gangs(expression) Controls how many parallel gangs are created.

num_workers(expression) Controls how many workers are created in each gang.

vector_length(list) Controls vector length of each worker.

private(list) A copy of each variable in list is allocated to each gang.

firstprivate(list) Private variables initialized from host.

reduction(operator:list) Private variables combined across gangs.

copy(),copyin(),copyout(),create() Same behavior we already know. 

present(list) Variable already there from some other data clause. 

Suppress any desire of compiler to copy and do nothing.

asynch()/wait() Just getting to this in a few slides...



Parallel Regions

As in OpenMP, the OpenACC parallel construct creates a number of parallel gangs that 

immediately begin executing the body of the construct redundantly. When a gang 

reaches a work-sharing loop, that gang will execute a subset of the loop iterations. 

One major difference between the OpenACC parallel construct and OpenMP is that 

there is no barrier at the end of a work-sharing loop in a parallel construct. 

SAXPY as a parallel region

#pragma acc parallel num_gangs(100), vector_length(128)
{
#pragma acc loop gang, vector
for( int i = 0; i < n; ++i )

y[i] = y[i] + a*x[i];
}



Compare and Contrast
Let’s look at how this plays out in actual code.

This

#pragma acc kernels
{

for( i = 0; i < n; ++i )
a[i] = b[i] + c[i];

} 

Is the same as

#pragma acc parallel
{

#pragma acc loop
for( i = 0; i < n; ++i )

a[i] = b[i] + c[i];
} 



Don’t Do This

But not

#pragma acc parallel
{

for( i = 0; i < n; ++i )
a[i] = b[i] + c[i];

} 

By leaving out the loop directive, we get totally redundant execution of the 

loop by each gang.  This is not desirable, to say the least.



Parallel Regions vs. Kernels
From these simple examples you could get the impression that simply putting in 

loop directives everywhere would make parallel regions equivalent to kernels.  

That is not the case.

The sequence of loops here

#pragma acc kernels
{
for (i=0; i<n; i++)

a(i) = b(i)*c(i)
for (i=1; i<n-1; i++)

d(i) = a(i-1) + a(i+1)
}

does what you might think.  Two kernels are generated and the first completes 

before the second starts.



A parallel region will work differently

#pragma acc parallel
{
#pragma acc loop
for (i=0; i<n; i++)

a(i) = b(i)*c(i)
#pragma acc loop
for (i=1; i<n-1; i++)

d(i) = a(i-1) + a(i+1)
}

The compiler will start some number of gangs and then work-share the iterations of the first loop 

across those gangs, and work-share the iterations of the second loop across the same gangs. 

There is no synchronization between the first and second loop, so there's no guarantee that the 

assignment to a(i) from the first loop will be complete before its value is fetched by some other 

gang for the assignment in the second loop. This will result in incorrect results.

But the most common reason we use parallel regions is because we want to eliminate these 

wasted blocking cycles. So we just need some means of controlling them…

Straight from 

the pages of 

our OpenMP

lecture!



Controlling Waiting

#pragma acc parallel loop async(1)

for (i = 0; i < n; ++i) 

c[i] += a[i];

#pragma acc parallel loop async(2)

for (i = 0; i < n; ++i)

b[i] = expf(b[i]);

#pragma acc wait

// host waits here for all async activities to complete

We can allow workers, or our CPU, to continue ahead while a loop is executing as

we wait at the appropriate times (so we don’t get ahead of our data arriving or a 

calculation finishing. We do this with asynch and wait statements.

We are combining the 

parallel region and 

loop directives 

together. A common 

idiom.



Using Separate Queues

#pragma acc parallel loop async(1) // on queue 1

for (i = 0; i < n; ++i) 

c[i] += a[i];

#pragma acc parallel loop async(2) // on queue 2

for (i = 0; i < n; ++i)

b[i] = expf(b[i]);

#pragma acc parallel loop async(1) wait(2) // waits for both

for (i = 0; i < n; ++i)

d[i] = c[i] + b[i];

// host continues executing while GPU is busy

We have up to 16 queues that we can use to manage completion 

dependencies.



Dependencies

#pragma acc kernels loop independent async(1)

for (i = 1; i < n-1; ++i) {

#pragma acc cache(b[i-1:3], c[i-1:3])

a[i] = c[i-1]*b[i+1] + c[i]*b[i] + c[i+1]*b[i-1];

}

#pragma acc parallel loop async(2) wait(1) // start queue 2

for (i = 0; i < n; ++i) // after 1

c[i] += a[i]; // need a to finish

#pragma acc parallel loop async(3) wait(1) // start queue 3

for (i = 0; i < n; ++i) // after 1

b[i] = expf(b[i]); // don’t mess with b

// host continues executing while GPU is busy

We can use 

these with 

kernels too.



Private Variables

integer nsteps, i

double precision step, sum, x

nsteps = ...

sum = 0

step = 1.0d0 / nsteps

!$acc parallel loop private(x) reduction(+:sum)

do i = 1, nsteps

x = (i + 0.5d0) * step

sum = sum + 1.0 / (1.0 + x*x)

enddo

pi = 4.0 * step * sum

One other important consideration for parallel regions is what happens with scaler (non-array) variables inside loops. 

Unlike arrays, which are divided up amongst the cores, the variables are shared by default. This is often not what you 

want.

If you have a scaler inside a parallel loop that is being changed, you probably want each core to have a private copy. This 

is similar to what we saw earlier with a reduction variable.

Consistent with this philosophy, scaler variables default to firstprivate inside of parallel regions where kernel regions 

default to copy. Both regions default to copy for aggregate types.



Loop Clauses

private (list) Each thread gets it own copy (implied for index variable).

reduction (operator:list) Also private, but combine at end.

gang/worker/vector( ) We’ve seen these.

independent Independent. Ignore any suspicions.

seq Opposite. Sequential, don’t parallelize.

auto Compiler’s call.

collapse() Says how many nested levels apply to this loop. Unrolls. Good for 

small inner loops.

tile(,) Opposite. Splits each specified level of nested loop into two. Good 

for locality.

device_type() For multiple devices.



Kernels vs. Parallel

Advantages of kernels

compiler autoparallelizes

best with nested loops and no 

procedure calls

one construct around many 

loop nests can create many 

device kernels

Advantages of parallel

some compilers are bad at 

parallelization

more user control, esp. with 

procedure calls

one construct generates one 

device kernel

similar to OpenMP



Parallel Regions vs. Kernels

(Which is best?)

To put it simply, kernels leave more decision making up to the compiler.  There is 

nothing wrong with trusting the compiler (“trust but verify”), and that is probably a 

reasonable place to start.

If you are an OpenMP programmer, you will notice a strong similarity between the 

tradeoffs of kernels and regions and that of OpenMP parallel for/do versus parallel 

regions.  We will discuss this later when we talk about OpenMP 4.0.

As you gain experience, you may find that the parallel construct allows you to apply 

your understanding more explicitly.  On the other hand, as the compilers mature, 

they will also be smarter about just doing the right thing.  History tends to favor this 

second path heavily.



Data Management

enter data Like copyin except that they do not need to apply to a structured block or 

scope.  Could just stick one in some initialization routine. Clauses can be 

asynch, wait, copyin or create.

exit data Bookend of above, but in addition to asynch and wait has copyout, and delete

(decrement reference count) and finalize (force count to zero).

update As used earlier, but has async, wait and some other clauses.

Again, as you get farther from a simple program, you may find yourself needing to manage data transfers in 

a more explicit manner.  We restricted ourselves to the data copy type commands for our initial work, but 

still found update to be necessary. In general you won’t find yourself frustrated for lack of a convenient data 

movement action.



Dynamic Memory

C

tmp = (double *) malloc(count*sizeof(double));

#pragma acc enter data create(tmp[0:count])

.

.

.

#pragma acc exit data delete(tmp)

free(tmp)

You may have wondered how these data transfers cope with dynamic memory. The answer is, very 

naturally as OpenACC is intended for serious codes which usually use dynamic allocation. Here is one way 

that you might find yourself allocating/deallocating a dynamic structure on both the host and device.

Fortran

allocate(tmp(count))

!$acc enter data create(tmp)

.

.

.

!$acc exit data delete(tmp)

deallocate(tmp)



Declare Directive

You can put your data movement specification close to your natural variable declarations.

declare create create on host and device, you will 

probably use update to manage 

declare device_resident create on device only, only accessible in 

compute regions 

declare link and declare create pointer update pointers are created for data to be copied



Data Structures

Somebody has probably asked this by now, but if not, it is important for me to note that complex 

data structures are just fine for OpenACC. Feel free to use:

• Complex structs

• C++ classes

• Fortran derived types

• Dynamically allocated memory

• STL?   Yes and No

The major caveat is that pointer based structures will not naturally move from CPU to GPU. This 

should be no surprise. You must do you own “deep copy” if you need to move such data.



Cache Directive

real temp(64)

!$acc parallel loop gang vector_length(64) private(temp)

do i = 1, n

!$acc cache(temp)

!$acc loop vector

do j = 1, 64

temp(j) = a(i,j)

....

CUDA programmers always want to know how to access CUDA shared memory. All of you should be 

interested in how you can utilize this small (~48KB) shared (by the gang) memory for items that 

should be kept close at hand.



CUDA 8.0 Unified Memory on Pascal*

Speaking of memory, a few realistic words are in order concerning the awesome sounding 

Unified Memory. No more data management?

GPU Memory Mapping CPU Memory Mapping

Interconnect

Page 
Fault

Page 
Fault

cudaMallocManaged(&array, size);

memset(array, size);

array array

__global__
Void setValue(char *ptr, int index, char val) 
{
ptr[index] = val;

}
setValue<<<...>>>(array, size/2, 5);

GPU Code CPU Code

* “CUDA 8 and Beyond”, Mark Harris, GPU Technology Conference, April 4-7, 2016



OpenACC 2.0 & 2.5
Things you didn’t know were missing.

The latest version of the specification has a lot of improvements.  The most anticipated 

ones remove limitations that you, as new users, might not have known about.  

However, they may still linger until all of the compilers get up to spec.

Procedure Calls

Nested Parallelism

As well as some other things that you might not have thought about

Device specific tuning

Multiple host thread support

Don’t be afraid to review the full spec at

http://www.openacc.org/sites/default/files/OpenACC_2pt5.pdf



Procedure Calls

In OpenACC 1.0, all procedures had to be inlined.  This limitation has been removed, but 

you do need to follow some rules.

#pragma acc routine worker
extern void solver(float* x, int n);
.
.
.
#pragma acc parallel loop num_gangs(200)
for( int index = 0; index < N; index++ ){

solver( X, n);
.
.

}

#pragma acc routine worker
void solver(float* x, int n){
.
.

#pragma acc loop
for( int index = 0; index < n; index++ ){

x[index] = x[index+2] * alpha;
.
.

}
.

}

In this case, the directive tells the compiler that “solver” will be a device executable and 

that it may have a loop at the worker level.  No caller can do worker level parallelism.



Nested Parallelism

The previous example had gangs invoking workers.  But it is now possible to have kernels 

actually launch new kernels.

#pragma acc routine
extern void solver(float* x, int n);
.
.
#pragma acc parallel loop
for( int index = 0; index < N; index++ ){

solver( X, index);
}

#pragma acc routine
void solver(float* x, int n){

#pragma acc parallel loop
for( int index = 0; index < n; index++ ){

x[index] = x[index+2] * alpha
.
.

}
.

}

Having thousands of lightweight threads launching lightweight threads is probably not the 

most likely scenario.



Nested Parallelism

This is a more useful case.  We have a single thread on the device launching parallelism 

from its thread.

#pragma acc routine
extern void solver(float* x, int n);
.
.
#pragma acc parallel num_gangs(1)
{

solver( X, n1 );
solver( Y, n2 );
solver( Z, n3 );

}

#pragma acc routine
void solver(float* x, int n){

#pragma acc parallel loop
for( int index = 0; index < n; index++){

x[index] = x[index+2] * alpha;
.
.

}
.

}

The objective is to move as much of the application to the accelerator and minimize 

communication between it and the host.



Device Specific Tuning

I hope from our brief detour into GPU hardware specifics that you have some 

understanding of how hardware specific these optimizations can be.  Maybe one more 

reason to let kernel do its thing.  However, OpenACC does have ways to allow you to 

account for various hardware details.  The most direct is device_type().

#pragma acc parallel loop  device_type(nvidia) num_gangs(200) \
device_type(radeon) num_gangs(800)

for( index = 0; index < n; index++ ){
x[i] += y[i];
solver( x, y, n );

}



Multiple Devices and Multiple Threads

Multiple threads and one device: fine.  You are responsible for making sure that the data is on 

the multi-core host when it needs to be, and on the accelerator when it needs to be there.  But, 

you have those data clauses in hand already (present_or_copy will be crucial), and OpenMP has 

its necessary synchronization ability.

Multiple threads and multiple devices.  One might hope that the compilers will eventually make 

this transparent (i.e. logically merge devices into one), but at the moment you need to:

Assign threads to devices:

omp_get_thread_num

call acc_set_device_num

Manually break up the data structure into several pieces:

!$acc kernels loop copyin(x(offs(i)+1:offs(i)+nsec),y(offs(i)+1:offs(i)+nsec))

From excellent example on Page 25 of the PGI 2016 OpenACC Getting Started Guide



Profiling

So, how do you recognize these problems (opportunities!) besides the relatively 

simple timing output we have used in this class?

One benefit of the NVIDIA ecosystem is the large number of tools from the CUDA 

community that we get to piggyback upon.

The following uses the NVIDIA Visual Profiler which is part of the CUDA Toolkit.



Mandlebrot Code

This is for an OpenACC Mandlebrot set image generation code from NVIDIA .  You can grab it 

at

https://github.com/NVIDIA-OpenACC-Course/nvidia-openacc-course-sources

https://github.com/NVIDIA-OpenACC-Course/nvidia-openacc-course-sources


Step 1 Profile

Half of our time is copying, 

none of it is overlapped.

We’re still much faster than the 

CPU because there’s a lot of 

work.

PCIe Transfers
PCIe

Transfers

Lots of Data Transfer Time



Pipelining with 32 blocks

Broken Into Blocks With Asynchronous Transfers



Optimized In A Few Well-Informed Stages

1.00X

4.23X

7.38X 7.36X

9.78X

1.00X

2.00X

3.00X

4.00X

5.00X

6.00X

7.00X

8.00X

9.00X

10.00X

11.00X

Baseline runs 

in parallel on 

16 cores

1. Parallelized

2. Blocked

4. 

Asynchronous

3. Update 

Added



OpenACC Things Not Covered

Language specific features: C dynamic arrays, C++ classes, Fortran derived types.  These particular items 
are well supported.  An excellent guide to this topic is the PGI OpenACC Getting Started Guide 
(http://www.pgroup.com/doc/openacc_gs.pdf).

Environment variables: useful for different hardware configurations

if clauses, macros and conditional compilation: allow both runtime and compile time control over host or 
device control flow.

API versions of nearly all directives and clauses

Hybrid programming.  Works great!  Don’t know how meaningful this is to you…

The OpenACC specification has grown quite accommodating as of Version 2.5.  You have already seen 

some redundancy between directives, clauses and APIs, so I have made no attempt to do “laundry lists” 

of every option along the way.  It would be quite repetitive.  I think you are well prepared to glance at 

the OpenACC Specification and grasp just about all of it.

We have omitted various and sundry peripheral items.  Without attempting to be comprehensive, here 

are a few topics of potential interest to some of you.

http://www.pgroup.com/doc/openacc_gs.pdf


Should I Learn CUDA?

So, the answer is increasingly “probably not”.  I will guess most of you fall on the “no” side.  Just like ML, you aren’t really an “expert” unless you 

do understand what the compiler is doing with your high level approach, but that may not be necessary for your purposes.

A very important principle that remains valid is that any performant approach must allow you to understand what you are ultimately asking the 

hardware to do at the low level.  A programmer that knows assembly knows fairly well what the C statement

X = X + 1

will become in ML:  It will take a some cycles to fetch a value from memory/cache into a register and add a 1 to it.  If you know how Python works, 

then you know that this same instruction might well take many hundreds of cycles, and it may be impossible to tell.  If you know C++,  this same 

line might generate exactly the same instructions as C, or it might involve an object and take a thousands of instructions (although you can almost 

always tell by closer inspection with C++).

The situation today has a very similar historical precedent.  Namely the evolution away from machine languages (“assembly”) to C.  To use PCs as a 

particular example.

1980’s 1990’s

DOS (Machine Language) Windows, Linux (C)

Games (Machine Language) Games (C)

Desktop Apps (C, Pascal, Basic) Desktop Apps (C, C++, VB)
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