

An intro to OpenACC

or

How to speed up your code in ten
lines or less

Rachel Smullen
Steward Code Coffee

23 Oct 2018

IHPCSS
● International High Performance Computing

Summer School
– http://www.ihpcss.org/

● 2019 in Kobe, Japan

– Summer school
to learn HPC tools

● ALL expenses paid

– You don't need to
be experienced
to apply!

http://www.ihpcss.org/

What is OpenACC and why should
you care?

● OpenACC is a way to use a GPU to help speed
up your code
– Without having to write in CUDA!

● Uses compiler hints (pragmas) to tell the compiler
where to use a GPU
– Means that the code is runnable in serial or parallel
– We (the users) don't need to know how a GPU works

to use one!

John Urbanic, PSC

When should you use OpenACC?

● When you have independent loops or highly
parallelizable regions
– When a small chunk of data that one processor may have

doesn't depend on the chunk that another has
– Are you using MPI or OpenMP?

● You can probably use OpenACC

– a[i] = b[i] + c[i]
● Do NOT use OpenACC (or other acceleration

methods) if you have significant data dependencies
– a[i] = a[i-1]+b[i]+c[i]

● a[i] depends on something that happened elsewhere

What is a GPU?
CPU (Central Processing Unit) GPU (Graphics Processing Unit)

Few expensive cores Many cheap cores

Very smart Pretty stupid

Somewhat parallelizable (threading) Very parallelizable

Where are GPUs on campus?

● UA HPC resources:
– El Gato (old)
– Ocelote (new)

● El Gato has many (140)
old GPUs
– CUDA 6-9

● Ocelote has a few (46) new GPUs and updated software
– Nvidia Telsa P100 GPUs
– PGI compilers (best for OpenACC)
– GCC 6+, CUDA 7-8 Rixin and I gave a Code Coffee presentation on HPC

resources last year: information can be found here

https://ua-astro-grads.github.io/2017/10/04/ua-computing-resources.html

How to access the GPUs?

● UA HPC docs: https://docs.hpc.arizona.edu
● Open OnDemand: https://ood.hpc.arizona.edu

– Provides a nice web interface for:
● Looking at files on the HPC cluster
● Checking on jobs
● Gaining shell access to both Ocelote and El Gato

– Can run interactive nodes, but no graphics (X-forwarding)
● Using an interactive desktop environment
● Running Jupyter notebooks

https://docs.hpc.arizona.edu/
https://ood.hpc.arizona.edu/

How to access the GPUs?

● Need to submit a job that requests GPU
resources
– For an interactive node:

– Submit a job
– Interactively
– To the group kkratter

● for me—use the va command to find the groups you belong to
– To the queue standard

● Can also use windfall, but do NOT use oc_standard or oc_windfall for GPUs
– That gives me 1 node with 28 CPUs and 168 GB memory

and 1 GPU
– That will run for 4 hours 0 min 0 sec
– Can also include -X for X-forwarding if available

qsub -I -W group_list=kkratter -q standard -l select=1:ncpus=28:mem=168gb:ngpus=1 -l walltime=4:0:0

Now back to OpenACC

● The PGI compiler (installed on Ocelote) is the
easiest compiler to use for OpenACC
– C++ and Fortran compatible
– GCC 6+ supports some OpenACC commands, but is

behind the times and isn't nearly as well supported
● You can figure that one out yourself... :)

● To load PGI in your interactive session
– module load pgi

Aside: the test problem

● I've provided a test case that solves the Laplace
equation

● Using the iterative average of neighboring cells, we
recover the time evolution and steady state solution

How do we use OpenACC

● With PGI, we can use the kernels directive to interact
with the GPU
– It automatically chooses the best way to disperse your

code to GPU cores
– We can have many parallel regions with different kernel

calls (no race conditions)

– Try this yourself in the provided code!

#pragma acc kernels
{
 code to parallelize
}

Let's compile and run our code!
● Serial:

– Compile:
pgcc -o serial.out laplace_acc.c

– Run: ./serial.out

● OpenACC
– Compile:

pgcc -acc -ta=tesla:cc60 -Minfo=accel -o gpu.out laplace_acc.c
– Run: ./gpu.out

● -acc: use OpenACC
● -ta: target the tesla GPUs
● -Minfo: provide some output on what is being parallelized

Timings
● Serial: ~16.5 s
● Accelerated: ~27 s

Timings
● Serial: ~16.5 s
● Accelerated: ~27 s

...uhhhh, what?

I thought the code was supposed to be faster?!?!

Timings
● Serial: ~16.5 s
● Accelerated: ~27 s

...uhhhh, what?

I thought the code was supposed to be faster?!?!

Let's profile our code.

In the terminal, type
export PGI_ACC_TIME=1

and rerun

Data Copy

● From the output, we can see that something called
copyin and copyout took a large part of our run
time

● The compiler was being conservative and making
sure that the arrays on the GPU and CPU were
synced every step

● If you remember nothing else, remember that I/O
is always slow, and minimize it where you can!

Data Copy
● We can use the following pragmas to tell the

compiler when and where to copy our code
– #pragma acc data copy(my_array)

● Copy my_array in at start of block and out at end of block

– #pragma acc data create(my_array)
● Create an empty my_array on the GPU—no data transfer

– #pragma acc data copyin(my_array), copyout(my_array)
● Copy my_array to GPU at beginning of block
● Copy my_array to CPU at end of block

– #pragma acc update host(my_array[1:1000])
● Force an update of my_array to the host (CPU) or devide (GPU)

Try adding in the correct data copy commands and
recompiling/rerunning your code.

Did it work?

My solution (runs in <1s)
#pragma acc data copy(Temperature_last), create(Temperature)
while (dt > MAX_TEMP_ERROR && iteration <= max_iterations) {

// main calculation: average my four neighbors

 #pragma acc kernels

for(i = 1; i <= ROWS; i++) {
for(j = 1; j <= COLUMNS; j++) {

Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +
Temperature_last[i][j+1] + Temperature_last[i][j-1]);

}
}
dt = 0.0; // reset largest temperature change

// copy grid to old grid for next iteration and find latest dt
#pragma acc kernels
for(i = 1; i <= ROWS; i++){

for(j = 1; j <= COLUMNS; j++){
dt = fmax(fabs(Temperature[i][j]-Temperature_last[i][j]), dt);
Temperature_last[i][j] = Temperature[i][j];

 }
}
// periodically print test values
if((iteration % 500) == 0) {
// not formally needed, but this is how you would update the CPU copy for temporary output

#pragma acc update host(Temperature)
track_progress(iteration);

}
iteration++;

}

Voila!

● You can now apply OpenACC to your own code!
● There is A LOT more that I haven't covered

– You can mesh OpenACC and MPI (best) or OpenMP
(not great) to use multiple GPUs

– There are lots of ways for you to help the compiler
out to get the right result

● Wait, async, atomic, etc.

– I've included some PowerPoints from the workshop I
went to to provide some examples

Happy coding!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

