An intro to OpenACC

or

How to speed up your code In ten
ines or less

Rachel Smullen
Steward Code Coffee
23 Oct 2018

IHPCSS

* International High Performance Computing
summer School

- http:/www.ihpcss.org/
e« 2019 in Kobe, Japan

- Summer school
to learn HPC tools

* ALL expenses paid

- You don't need to
be experienced

to apply!

http://www.ihpcss.org/

What is OpenACC and why should

you care?

 OpenACC is a way to use a GPU to help speed
up your code

- Without having to write in CUDA!

* Uses compiler hints (pragmas) to tell the compiler
where to use a GPU

- Means that the code is runnable in serial or parallel

- We (the users) don't need to know how a GPU works
to use one!

Open

More Science, Less Programming

Reading DNA nucleotide sequences

Shanghai JiaoTong University

=
o ¥ 4 directives
e A 16x faster

HydroC- Galaxy Formation

PRACE Benchmark Code, CAPS

1 week

3x faster

A Few Cases

Designing circuits for quantum
computing

UIST, Macedonia

1 week

40x faster

Real-time Derivative Valuation

Opel Blue, Ltd

Shioen My
w . =g Few hours
v wirIE 140
P el 70x faster
] 3.,-t ‘af’ ,1‘1.‘7_4

Extracting image features in real-
time

Aselsan

—
- Y L

— I
b 2 AR .

o y=sa 3 directives

P, m 4.1x faster

Matrix Matrix Multiply

Independent Research
Scientist

6.4x faster
\Hl, :\1:-"\»1]?;!;! P

John Urbanic, PSC

When should you use OpenACC?

* \When you have independent loops or highly
parallelizable regions

- When a small chunk of data that one processor may have
doesn't depend on the chunk that another has

- Are you using MP| or OpenMP?
* You can probably use OpenACC

- alil = bli] + cli]

Do NOT use OpenACC (or other acceleration
methods) if you have significant data dependencies

- ali] = ali-1]+bli]+cli]

* ali] depends on something that happened elsewhere

What is a GPU?

CPU (Central Processing Unit) GPU (Graphics Processing Unit)
Few expensive cores Many cheap cores

Very smart Pretty stupid

Somewhat parallelizable (threading) Very parallelizable

gopg 8
-1-0 Wi
go0= @

(112131

G200y 8808y G808y G8AN
G000 N G008 N G800 N 0O0Q0
5000= B000= 9000 G000 E

Where are GPUs on campus?

Computers
are here

e UA HPC resources:
- El Gato (old)

Speedway Boulevard

- Ocelote (new)

e £l Gato has many (140) "m iRers
old GPUs P 2

- CUDA 6-9
* Ocelote has a few (46) new GPUs and updated software

— Nvidia Telsa P100 GPUs
- PGl compilers (best for OpenACC)
— GCC é_|_’ CU DA 7_8 Rixin and | gave a Code Coffee presentation on HPC

resources last year: information can be found here

https://ua-astro-grads.github.io/2017/10/04/ua-computing-resources.html

How to access the GPUs?

e UAHPC docs: hitps:/docs.hpc.arizona.edu
 Open OnDemand: https:/ood.hpc.arizona.edu

— Provides a nice web interface for:
* Looking at files on the HPC cluster

Checking on jobs

Gaining shell access to both Ocelote and El Gato
- Can run interactive nodes, but no graphics (X-forwarding)

Using an interactive desktop environment

Running Jupyter notebooks

https://docs.hpc.arizona.edu/
https://ood.hpc.arizona.edu/

How to access the GPUSs?

* Need to submit a job that requests GPU

resources
- For an interactive node:

Submit a job
Interactively
To the group kkratter

* for me—use the va command to find the groups you belong to

To the queue standard
e (Can also use windfall, but do NOT use oc standard or oc_windfall for GPUs

That gives me 1 node with 28 CPUs and 168 GB memory
and 1 GPU

That will run for 4 hours O min O sec

Can also include -X for X-forwarding if available

Now back to OpenACC

* The PGl compiler (installed on Ocelote) is the
easiest compiler to use for OpenACC

- and compatible

- GCC 6+ supports some OpenACC commands, but is
behind the times and isn't nearly as well supported

* You can figure that one out yourself... :)

* To load PGl in your interactive session

— module load pgi

[rsmullen@login2 ~]$ module load pgi
[rsmullen@login2 ~]% module list
Currently Loaded Modulefiles:
1) pbspro/current 2) gce/6.1.0 3) pgi/2018/2018-184
[rsmullen@login2 ~]%

Aside: the test problem

* |'ve provided a test case that solves the Laplace

equation VZf(x,y) = 0
Initial Conditions Final Steady State
Metal Metal

Plate N\ Plate

* Using the iterative average of neighboring cells, we
recover the time evolution and steady state solution

How do we use OpenACC

 \With PGI, we can use the kernels directive to interact
with the GPU

- |t automatically chooses the best way to disperse your
code to GPU cores

- We can have many parallel regions with different kernel
calls (no race conditions)

#pragma acc kernels

{

code to parallelize

J

— Try this yourself in the provided code!

Let's compile and run our code!

e Serial:

- Compile:
pgcc -o serial.out laplace_acc.c

- Run: ./serial.out

e OpenACC

- Compile:
pgcc -acc -ta=tesla:cc60 -Minfo=accel -o gpu.out laplace_acc.c

- Run: ./gpu.out

e -gcc: use OpenACC
e -ta: target the tesla GPUs
* -Minfo: provide some output on what is being parallelized

Timings
e Serial: ~16.5 s

e Accelerated: ~2/ s

Timings
e Serial: ~16.5 s

e Accelerated: ~2/ s

...uhhhh, what?

| thought the code was supposed to be faster?!?!

Timings
e Serial: ~16.5 s

e Accelerated: ~2/ s

...uhhhh, what?

| thought the code was supposed to be faster?!?!

Let's profile our code.

In the terminal, type
export PGl _ACC TIME=1
and rerun

Data Copy

* From the output, we can see that something called
copyin and copyout took a large part of our run
fime

* The compiler was being conservative and making
sure that the arrays on the GPU and CPU were
synced every step

* |[f you remember nothing else, remember that
, and minimize it where you can!

Data Copy

* \We can use the following pragmas to tell the
compiler when and where to copy our code

— #pragma acc data copy(my_array)
 Copy my_array in at start of block and out at end of block
- #pragma acc data create(my_array)
* Create an empty my_array on the GPU—no data transfer
— #pragma acc data copyin(my_array), copyout(my_array)

 Copy my_array to GPU at beginning of block
 Copy my_array to CPU at end of block

— #pragma acc update host(my_array[1:1000))
* Force an update of my_array to the host (CPU) or devide (GPU)

Try adding in the correct data copy commands and
recompiling/rerunning your code.

Did it work?

My solution (runs in <15s)

#pragma acc data copy(Temperature_last), create(Temperature)
while (dt > MAX_TEMP_ERROR && iteration <= max_iterations) {
// main calculation: average my four neighbors

#pragma acc kernels
for(i = 1; i <= ROWS; i++) {

for(j = 1; j <= COLUMNS; j++) {

Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +
Temperature_last[i][j+1] + Temperature_last[i][}-1]);

}
}
dt = 0.0; // reset largest temperature change

I/ copy grid to old grid for next iteration and find latest dt
#pragma acc kernels
for(i = 1; i <= ROWS; i++){
for(j = 1; j <= COLUMNS; j++){
dt = fmax(fabs(Temperature[i][j]-Temperature _last[i][j]), dt);
Temperature_last[i][j] = Temperature[i][j];
}
}
Il periodically print test values
if((iteration % 500) == 0) {

// not formally needed, but this is how you would update the CPU copy for temporary output

#pragma acc update host(Temperature)
track_progress(iteration);

}

iteration++;

Voila!

* You can now apply OpenACC to your own code!

e There is A LOT more that | haven't covered

- You can mesh OpenACC and MPI (best) or OpenMP
(not great) to use multiple GPUs

— There are lots of ways for you to help the compiler
out to get the right result

* \Walt, async, atomic, etc.

- |'ve included some PowerPoints from the workshop |
went to to provide some examples

Happy coding!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

