
Photo by chuttersnap on Unsplash

Joseph Long
Code Coffee • 2019-01-22

“Sandboxing Cycle” by

Randall Munroe (xkcd)

CC-BY-NC 2.5

Ideal world

$ pip install myutility

$ myutility

Welcome to myutility!

$ pip install myutility

$ myutility

myutility depends on ffmpeg, please install

it

$ apt-get install ffmpeg

Error: permission denied

$ sudo apt-get install ffmpeg

Error: you are not in group sudoers

[email hpc-consult@list.arizona.edu]

[wait up to \infty days]

$ myutility

ffmpeg version 3.1.1 required, found ffmpeg

3.1.0

[loud swearing]

$ logout

Real world

What is a container?

• Isolates not only a process, but its
dependencies and view of the
filesystem
• (Isn’t that a VM? Well, almost.

Containers don’t involve hardware
virtualization at all, and they all share
a single kernel.)

• Defines an immutable filesystem
with a set of packages / files
installed

• Used for application packaging
when dependencies are
complicated

Artist’s impression of containers on Ocelote

Container vocabulary

• Docker
• A company and a piece of

software and a container format

• Container image
• Archive (like .zip or .tar.gz)

containing a snapshot of the
filesystem the contained programs
will run in

• Dockerfile
• Text-based recipe to build a

container image from files and
shell commands

• Singularity
• Competing container format with

less flexibility, but compatible with
HPC permissions and quotas

• Container runtime
• A piece of software that can load a

container image and execute
commands inside it (Docker,
Singularity)

Building a container (the short version)

In your Dockerfile

1. Choose a “base image” (FROM)

2. Add files (ADD)

3. Execute build commands (RUN)

In your shell:

1. $ docker build ./ -t
containername

2. $ docker run -it
containername bash

• Whether targeting Docker or
Singularity, a Dockerfile is the way
to go
• https://docs.docker.com/engine/refer

ence/builder/

• Substitute bash for any command,
provided it’s present within the
container

• UA HPC caveat: use a CentOS 6.10
base image to ensure compatibility
with the vintage OS on El Gato and
Ocelote

Before we get started

• Ensure that Docker desktop is
running

• If there’s an option to log in on the
menu, log in with your DockerHub

(download) credentials

• Make sure the docker command
works in your terminal

$ docker –v

Docker version 18.09.1,

build 4c52b90

Let’s build a container

• ffmepg is notoriously annoying to
install, and isn’t even in the CentOS
package repository
• Pretend we can’t just module load
ffmpeg…

• We need ffmpeg to generate
animations from matplotlib

• What if we could package ffmpeg
and Python and our script to run
on HPC?

• But first, let’s just make the
simplest possible (empty)
container…

1. Make a new directory (e.g. container-
example/)

2. Make a new file named Dockerfile
with the contents
FROM centos:6.10

3. Build it: docker build . -t
example

4. Run bash in your container:
docker run -it example bash

5. Now you’re running in CentOS 6.10*!
Try cat /etc/redhat-release

*Well, kinda.

Why CentOS 6.10?

• What is CentOS anyway?
• “Community Enterprise OS”,

basically a $0 version of Red Hat
Enterprise Linux

• Slow moving, conservative, loved
by systems administrators

• Loathed by scientists

• Uses really old versions of
everything and tries to keep
things totally backwards
compatible

• If you run an old, compiled
program on a newer Linux, it’s
practically guaranteed to work.

• If you run a new program on old
Linux, you may see “FATAL:
kernel too old”

• Short answer:

To make UA HPC happy

Adding layers

• Layers are a clever
way to separate the
process of building a

container into stages

• Each Dockerfile line
adds a layer

• Adding new steps to

the end of the
Dockerfile reuses
previous layers

build

everything

run

build A

run

build B

build A

run

build B

build C

Adding layers

• Following
https://www.vultr.com/docs/how-to-
install-ffmpeg-on-centos, we add RUN
directives to our Dockerfile

• Everything runs as root by default, so
we can omit sudo
• Does this worry you? It should…

• We can also ignore the line about
shutting down and rebooting

• Build it: docker build . -t
example

• See if ffmpeg runs:
docker run -it example
ffmpeg

FROM centos:6.10

RUN yum install epel-release -y

RUN yum update -y

RUN rpm --import
http://li.nux.ro/download/nux/RPM-GPG-KEY-
nux.ro

RUN rpm -Uvh
http://li.nux.ro/download/nux/dextop/el6/x86_6
4/nux-dextop-release-0-2.el6.nux.noarch.rpm

RUN yum install ffmpeg ffmpeg-devel -y

Moving from your laptop to UA HPC

• The following steps require an HPC account and
a Dockerhub account

• Open https://hub.docker.com/

• Make a new repository called “example”

• The full name will be something like
“jdlong/example” where “jdlong” is your
DockerHub username

• Locally, open a terminal and type
docker login

• Now we want to build and tag with the new, full
name:
docker build . -t jdlong/example

• And finally, push:
docker push jdlong/example

Moving from your laptop to UA HPC

• Log in to your preferred HPC cluster

• Enable the Singularity container runtime

• module load singularity

• Download your container

• singularity pull docker://jdlong/example

• The Singularity image is now present at
./example_latest.sif

• To run a command in the container,
./example_latest.sif ffmpeg

Photo by Guillaume Bolduc on Unsplash

Why is all this useful?

• These steps work on any
machine with a container
runtime, no matter the
underlying OS
• (As long as it’s not older than

Linux 2.6…)

• You can distribute instructions to
automatically and exactly
recreate your computing
environment along with your
papers / software

• Defining a set of packages for a
teaching environment or demo
• e.g. https://mybinder.org

• Running software that makes
assumptions about its
environment that conflict with
other software you need
• e.g. some software needs version

1.0 of a library, other software
uses 2.0

