
Rixin Li

What	is C++?

Class

OOP

?

?

What	is C++?A multi-paradigm
programming language

It’s C!

A hybrid language

An object-oriented
programming language

Template
meta-programming!

A random collection
of features

Embedded systems
programming language

Low level!

Buffer
overflows

Too big!

Generic programming

Credit:	Stroustrup - C++11	Style Spring'13

Class hierarchies

Classes

Functional programming

The	roots	of C++

Assembler

Cobol

Fortran

C++

C

Simula

C++11

General-purpose abstraction

Domain-specific		
abstraction

Direct	mapping to		
hardware

Java

C#BCPL

C++14

Credit:	Stroustrup - CppCon'16

C++: Success

0

500000

1000000

1500000

2000000

2500000

3000000

4000000

3500000

4500000

5000000

19
79

19
80

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

#C++	users	(approximate,	with interpolation)

Why	exponential growth?

Why	slowdown	and regression?

Why	resumed	fast growth?

Commercial release
Start	of standardization

Credit:	Stroustrup - CppCon'16

Major	design decisions:
Evolution	is bursty

C compatibility
• Macros
• #include

modules
STL

simplify
• auto
• range-for
• lambdas

movesimplify
• struct	S	-> S
• overloading

function declarations

coroutines

1979 1988 20??20171983 1994 1998 2003 2011

RAII

OOP FP?

virtual functions		

coroutines contracts

Metaprogramming

UDT

exceptions
conceptsfutures

operator overloading
basic concurrency High-level concurrency

~~	built-in type
struct	== class
constructors	and destructors

templates
Type	and	resource safety•

•
Credit:	Stroustrup - CppCon'16

C++: Success

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

19
79

19
80

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

Absorbing improvements	
Hoping	for more

#C++	users	(approximate,	with interpolation)

Feature	drought;	non-standard libraries
Devising	support	for techniques
Alternatives	to	C++	improving;	“C++	is	dead” claims

Absorbing improvements
Hoping	for more

Commercial release

“Early	C++” complete

STL

Major	new	standard		
integrates	many	new features

CPUs	stop	getting faster

Credit:	Stroustrup - CppCon'16

C++	in	two lines

• Direct	map	to hardware
– of	instructions	and	fundamental	data types
– Initially	from C
– Future:	use	novel	hardware	better	(caches,	multicores,	GPUs,	FPGAs,	SIMD, …)

• Zero-overhead abstraction
– Classes,	inheritance,	generic	programming, functional	programming,	…
– Initially	from	Simula	(where	it	wasn’t zero-overhead)
– Type- and	resource-safety,	concepts,	modules,	concurrency, …

Credit:	Stroustrup - CppCon'16

• Direct	map	to hardware
à low-level	with	machine	efficiency

• Zero-overhead abstraction
à high-level	with	programmer	efficiency

Performance

Language	features +			compiler +			optimizer deliver performance

C++	itself	(syntactic	sugar)
Standard	Libraries	(STL)
Boost,	Intel	MKL,	etc.

GCC
Clang

Intel	C++
etc.

-O2	/	-O3
-march=native
-ffast-math

etc.

Benchmark	
overall	efficiency

e.g.,
qsort()	vs.	sort()

Credit:	Rainer	Grimm	C++11:	An Overview

Deduction	of	the	type	with auto

▪ The compiler determines the type:
auto myString= "my String"; // C++11

auto myInt= 5; // C++11

auto myDouble= 3.14; // C++11

▪ Get a iterator on the first element of a vector:
vector<int> v;

vector<int>::iterator it1= v.begin(); // C++98

auto it2= v.begin(); // C++11

▪ Definition of a function pointer:
int add(int a,int b){ return a+b; };

int (*myAdd1)(int,int)= add; // C++98

auto myAdd2= add; // C++11

myAdd1(2,3) == myAdd2(2,3);

Syntactic	Sugar	Example

▪ The compiler determines the type of an expression:
decltype("str") myString= "str"; // C++11

decltype(5) myInt= 5; // C++11
decltype(3.14) myFloat= 3.14; // C++11

decltype(myInt) myNewInt= 2011; // C++11

// C++11

int add(int a,int b){ return a+b; };

decltype(add) myAdd= add; // (int)(*)(int, int)

myAdd(2,3) == add(2,3);

Deduction	of	the	type	with decltype
Syntactic	Sugar	Example

Credit:	Rainer	Grimm	C++11:	An Overview

▪ Simple iteration over a container:
vector<int> vec={1,2,3,4,5};

for (auto v: vec) cout << v << ","; // 1,2,3,4,5,

unordered_map<string,int> um= {{"C++98",1998},{"C++11",2011}};

for (auto u:um) cout << u->first << ":" << u->second << " ";

// "C++11":2011 "C++98":1998

▪ Modifying the container elements by auto&:
for (auto& v: vec) v *= 2;

for (auto v: vec) cout << v << " ,"; // 2,4,6,8,10,

string testStr{"Only for Testing."};

for (auto& c: testStr) c= toupper(c);

for (auto c: testStr) cout << c; // "ONLY FOR TESTING."

The	range-based	for-loop
Syntactic	Sugar	Example

Credit:	Rainer	Grimm	C++11:	An Overview

▪ []: captures the used variables per copy of per reference
▪ (): is required for parameters
▪ ->: is required for sophisticated lambda functions
▪ {}: may include expressions and statements

Lambda	functions
Syntactic	Sugar	Example

Credit:	Rainer	Grimm	C++11:	An Overview

▪ Sum the elements of a vector:
vector<int> vec={1,2,3,4,5,6,7,8,9,10};

auto sum = 0;
for_each(v.begin(),v.end(),[&sum](int x) {sum += x;});

• Lambda	Expressions
• Automatic	Type	Deduction	and	decltype
• Uniform	Initialization	Syntax
• New	Smart	Pointer	Classes
• Deleted	and	Defaulted	Functions
• Delegating	Constructors
• Rvalue References
• C++11	Standard	Library	(More	Algorithms)
• Threading	Library	and	Multithreading
• nullptr
• …
• See	more	on	here

There	are	still tons	of	new	features	+	libraries.

Online	References
There	are	still tons	of	new	features	+	libraries.

For	better	programmer	efficiency,	you	need	a	good	IDE.
Visual	Studio,	Xcode,	Clion,	Eclipse,	etc.

Recommended	Books

Credit:

Recommended	Books

PROGR AMMING/C++

Effective Modern C++

ISBN: 978-1-491-90399-5

US $49.99 CAN $52.99

“ After I learned the C++
basics, I then learned
how to use C++ in
production code from
Meyers' series of
Effective C++ books.
Effective Modern C++
is the most important
how-to book for advice
on key guidelines,
styles, and idioms to use
modern C++ effectively
and well. Don't own it
yet? Buy this one. Now.”

—Herb Sutter
 Chair of ISO C++ Standards Committee and

C++ Software Architect at Microsoft

Twitter: @oreillymedia
facebook.com/oreilly

Coming to grips with C++11 and C++14 is more than a matter of familiarizing
yourself with the features they introduce (e.g., auto type declarations,
move semantics, lambda expressions, and concurrency support). The
challenge is learning to use those features effectively—so that your
software is correct, efficient, maintainable, and portable. That’s where
this practical book comes in. It describes how to write truly great software
using C++11 and C++14—i.e. using modern C++.

Topics include:

 ■ The pros and cons of braced initialization, noexcept
specifications, perfect forwarding, and smart pointer make
functions

 ■ The relationships among std::move, std::forward, rvalue
references, and universal references

 ■ Techniques for writing clear, correct, effective lambda
expressions

 ■ How std::atomic differs from volatile, how each should be
used, and how they relate to C++'s concurrency API

 ■ How best practices in "old" C++ programming (i.e., C++98)
require revision for software development in modern C++

Effective Modern C++ follows the proven guideline-based, example-driven
format of Scott Meyers' earlier books, but covers entirely new material. It's
essential reading for every modern C++ software developer.

For more than 20 years, Scott Meyers' Effective C++ books (Effective C++, More
Effective C++, and Effective STL) have set the bar for C++ programming guidance.
His clear, engaging explanations of complex technical material have earned him a
worldwide following, keeping him in demand as a trainer, consultant, and confer-
ence presenter. He has a Ph.D. in Computer Science from Brown University.

Scott Meyers

Effective
Modern C++
42 SPECIFIC WAYS TO IMPROVE YOUR USE OF C++11 AND C++14

Effective M
odern C++

M
eyers

Appendix:	C++20	Draft

