Real Programmers Debug
With Fire Extinguishers

Software Controlling (Astronomy) hardware in the Real World[TM]

— Craig Kulesa —

GENERAL OUTLINE

PHILOSOPHIES

ARCHITECTURES

PROTOCOLS (SPI, 12C, SERIAL, CAN, ETHERNET, ETC.)
NETWORK SOCKETS, INDIAND OTHER GLUE LAYERS
GUIS

PHILOSOPHY

* Simplicity is prerequisite for reliability. It is not a dispensable luxury but a quality
that decides between success and failure.

* Use unix.

* Everything looks like a file. hardware shows up as special nodes in /dev.
* Write “programs” that do one thing and do it well.
* Stitch them together to make the system do what you want.
* Linux prevails in embedded systems but isn’t always the best fit.
* The C language is the lingua franca of embedded systems
* The best match for speed, efficient use of resources, latency.

* Python is becoming more prevalent when those things aren’t critical.

)

Open foundation: NetBSD

Linux is great, but NetBSD is also an excellent choice for developing embedded software and

hardware.

Less chaotic development leads to more stable interfaces that are tested better. (documentation and
developer skill can accumulate)

Less superfluous redesign — recognition that developer time is not '0-cost’.

Very portable by design rather than brute force (proper hardware abstraction, vs. patch on top of patch to make ARM look
like a 386 to the kernel)

All features built from a single, unified source tree.

Cross-compilation toolchains and a single, efficient libc is an integral part of the build system. To
build an ARM distribution from any POSIX system, you type one command. Doesn’t matter what OS or
what hardware -- | swear it’s magical:

J/build.sh —U -m evbarm tools distribution sets

Kernel debugging, dynamic tracing, kernel level core dumps has always been possible.

Very open BSD license.

ARCHITECTURE

* ”"Hardware: The Part of the System that can be Kicked”

* Actually, the line between hardware and software is highly blurred
* Kernelspace vs Userspace
* Monolithic vs Distributed
* Hardware requirements

* General purpose I/O pins (GPIO)
* Ethernet

* Include a hardware-less “simulator’” mode for standalone testing

ASCII

GSEOS
MOC

Soc port 14201

port 6001

replies

rxServer

TCP socket server
port 9001

commands *

UbDP
stream

RA/DEC :

HKServer

TCP socket server
port 9002

OpticsServer

TCP socket server
port 9003

STO flight dewar

ASCIl commands
and responses

pressure vessel XPV

binary commands
and responses

IIDACII

DACserver

python 2.7 script

dhcpd SpecServer
HKServer issue IP TCP socket server
TCP socket address port 9734
socket server
Scooper oo
level O FITS

vsftpd

data return

processor

standalone C program

3

flash
storage

PROTOCOLS : 1. 12C AND SPI

* Simple 2-4 wire protocols to communicate with discrete electronics elements like DACs
and ADCs, multiplexers, bus expanders, etc.

* 12C is 2-wire: a clock line and a bidirectional data line. A unique device address determines
which device you are talking to.

* SPl is 4 wire: No addresses. You pull a Chip Select (CS) line to get a device’s attention.
Two unidirectional data lines handle transfers.

start condition RW acknowledge acknowledge i acknowledge
from slave from slave 1 from slave

WRITE TO , \
I 2(: PORT '

"
i |ATA 1 VALID
DATA OU '

FROM PORT L= -
"TEREE

sup1421

Figure 6. WRITE to output port register

BARE WRAPPER TO SET A PIN STATE USING GPIO

688 eme=] S et e ST et el e e
{
struct gpio _req req;
N SRR S T ORISR
reg.gp pin = SCL; req.gp _value = val;
0 e e S e Do e e e e et e et eraeta T fe T S !

BARE WRAPPER TO WRITE A I12C BYTE USING THE
KERNEL

L B e eme et T oot o e et o et et B e o e e e et S 1 b e e o0 o)
{
1Nt firle s sropentolde vt et B RDWR):
[oo 30 o5 o] 13 Sopeneeten 2 Togeselulo] Lo etetenel o] i ala e ot
12C smbuSs W EEe Dyt ch e i AxXEeE R aidata) ;
ome e e e o et et

HOW STANDARDS PROUIFERATE:
(65 A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, £TC)

SITUATION:

THERE ARE
|4 COMPETING
STANDPRDS.

1?! RiDIcuLous!

WE NEED To DEVELOR

ONE JNIVERSAL STANDARD

THAT COVERS EVERYONES
VSE CASES. YERH!

‘\O J

)

=g

SITUATION:

THERE ARE
|5 COMPETING
STANDPRDS.

CPOL=0 __M/ LU
SCK ¢pol=1 ™\

SS \ [

Cycle# DX 1z s 4Ys eX7 s —
CPHA=0 MISO ZX T X2 X35 X4 X5 X6 X7 X8 Xz
MOSI| X G Yz Xz {4 Y s Y6 X7 X s =z

Cycle# TSz YXs X4 X5 e)X7 X8
CPHA=1 MISO zXX 2 X8 Y45 6 X7 X8z
MOSI zZXTX 72 X3 X456 X7 X8z

SPI modes

PROTOCOLS : 2. SERIAL (RS232, RS485, RS422)

* Standardized Point-to Point data transfer protocol. Historically used for
line printers and modems, but now generically used for industrial

automation systems, scientific lab equipment, managed network equipment,
embedded computing.

* Easy to add to a standard laptop using USB-to-serial converter. Common
interface is the canonical 9-pin D-Sub connector.

* Requires very little supporting software (screen, minicom, ‘import serial’)

PROTOCOLS : 3. CAN BUS

e Controller Area Network

* 2-wire robust vehicle bus standard used to connect many disparate
(microcontroller) systems without a host controller or computer

* Your car runs on CAN!

* For observatories, power systems tend to use CAN (solar panel controllers, peak
power trackers, generators, wavesculptors, wind turbines, etc...)

. ' R 1 .
! Not Terminated ! E Not Terminated ! ! Not Terminated
! At Node ! ! At Node E I At Node

! i

ISO 11898-2 Network

—
A

L Ol s SR ST T NS R S
¥+t e B st
4 4 % » L e
VIR0 VP A R
L T RN ST R AR AN L S S ¢
JUEILY (I F .
R L 3 D A (O
E (L (4 I
vttt sl
PRERSAIRY S, ¢ i () 1 (0

NP I8 o il

NETWORK SOCKET SERVERS

Access to your hardware from anywhere
(internet of things...)

The entire Internet is just a pile of socket
servers

* Example of email sending, http server, etc.

Example Python and C implementations for
clients, servers

Examples of use

Server

socket()
bind()

listen()

accept()
recv()
send()

close()

Client

socket()

connect()
send()
recv()

close()

OTHER GLUE LOGIC EXAMPLES: INDI

Instrument Neutral Distributed Interface; see indilib.org

INDI drivers advertise their capabilities by XML;an INDI Server collects them for presentation to
clients

GUIs for INDI servers can be self-described! This has to be seen to be believed.

INDI Client | == INDI Driw
I

INDI Client 2 | == INDI Drivw
I
| == indiserver =-|
| I

| |
INDI Client n =--| | == INDI Drivw

Client INET Server UM I Driwver Hardware

processes sockets IToCes pipes processes devices

KStarsFITS Viewer —KStars

File Edit View Help " Ekos — KStars

L o) ¥ G I| = Histogram Statistics o
== H M) & @ @ Ly E g | Setup | CCD

SH155_Light_SiI_18.fits* € | Focus @ SR | o Sequence Queue

Focus | Alignment = Guide

Device: QsI CCD s & || W

Exposure: | 600.000 | Binning: X: |1 Y: (1 Status Filter Type Bin

Frame: X: |0 : 4|w:[3326 |o|H:[2504 |7 |q Inprogress si el Ix1

Type: Light -
INDI Control Prefix: SH155 | Type |v|Filter Expose Duration

Count: 16 | Delay: [0

SX CCD Lodd
Main Control Directory: | /home/jasem/Pictures/Pixinsight/SH155/511 =

Filters: - | ISO:
Conne

Ports

Direct Filter Auto dark subtract Progress

SEEE Device: | QSI CCD Add 15O 8601 time stamp Expose: |271.00| seconds left o
Timer Filter: |51 v| Display in FITS Viewer Progress: [5 | of [16 | completed

Relati : | Maximum Guiding Deviation |3.00 |3|" _ 31%
Positig
Absol
ositiol . | Park When Complete
Abort

| Autofocus if HFR > | 0,535 |5/ pixels

Tempg

1,569.00 X:475 Y:40 10% 3326x2504
Temp4}
ensate

Reset

2014-12-20T19:16:05 Capturing image...

2014-12-20T19:16:05 Guiding deviation 2.19 is now lower than limit value of 3 arcsecs, resuming exposure.
2014-12-20T19:16:01 Guiding deviation 3.14 exceeded limit value of 3 arcsecs, aberting exposure.
2014-12-20T19:15:59 Capturing image...

¥ Enable logging

1

2014-12-20T16:15:39: Focuser reached requested position.
2014-12-20T16:15:37: Focuser is moving to position 24496
2014-12-20T16:15:29: Focuser reached requested position.

	Slide 1
	General Outline
	Philosophy
	Slide 4
	Architecture
	Slide 6
	Protocols : 1. I2C and SPI
	Bare Wrapper to SET a PIN STATE using GPIO
	Bare Wrapper to write a I2C byte using the kernel
	Slide 10
	Protocols : 2. Serial (RS232, Rs485, RS422)
	Protocols : 3. CAN bus
	Slide 13
	Network Socket Servers
	Other Glue logic examples: INDI
	Slide 16

