
Real Programmers Debug
With Fire Extinguishers

Software Controlling (Astronomy) hardware in the Real World[TM]

– Craig Kulesa –

GENERAL OUTLINE

• PHILOSOPHIES

• ARCHITECTURES

• PROTOCOLS (SPI, I2C, SERIAL, CAN, ETHERNET, ETC.)

• NETWORK SOCKETS, INDI AND OTHER GLUE LAYERS

• GUIS

PHILOSOPHY

• Simplicity is prerequisite for reliability. It is not a dispensable luxury but a quality
that decides between success and failure.

• Use unix.
• Everything looks like a fle. hardware shows up as special nodes in /dev.

• Write “programs” that do one thing and do it well.

• Stitch them together to make the system do what you want.

• Linux prevails in embedded systems but isn’t always the best ft.

• The C language is the lingua franca of embedded systems

• The best match for speed, effcient use of resources, latency.

• Python is becoming more prevalent when those things aren’t critical.

Open foundation: NetBSD
Linux is great, but NetBSD is also an excellent choice for developing embedded software and
hardware.
Less chaotic development leads to more stable interfaces that are tested better. (documentation and
developer skill can accumulate)

Less superfuous redesign – recognition that developer time is not '0-cost'.

Very portable by design rather than brute force (proper hardware abstraction, vs. patch on top of patch to make ARM look
like a i386 to the kernel)

All features built from a single, unifed source tree.

Cross-compilation toolchains and a single, effcient libc is an integral part of the build system. To
build an ARM distribution from any POSIX system, you type one command. Doesn’t matter what OS or
what hardware -- I swear it’s magical:

./build.sh –U -m evbarm tools distribution sets

Kernel debugging, dynamic tracing, kernel level core dumps has always been possible.

Very open BSD license.

ARCHITECTURE

• ”Hardware: The Part of the System that can be Kicked”
• Actually, the line between hardware and software is highly blurred

• Kernelspace vs Userspace

• Monolithic vs Distributed

• Hardware requirements

• General purpose I/O pins (GPIO)

• Ethernet

• Include a hardware-less “simulator” mode for standalone testing

PROTOCOLS : 1. I2C AND SPI

• Simple 2-4 wire protocols to communicate with discrete electronics elements like DACs
and ADCs, multiplexers, bus expanders, etc.

• I2C is 2-wire: a clock line and a bidirectional data line. A unique device address determines
which device you are talking to.

• SPI is 4 wire: No addresses. You pull a Chip Select (CS) line to get a device’s attention.
Two unidirectional data lines handle transfers.

I2C

BARE WRAPPER TO SET A PIN STATE USING GPIO

void setI2C_scl(int val)
{
 struct gpio_req req;
 memset(&req, 0, sizeof(req));
 req.gp_pin = SCL; req.gp_value = val;
 ioctl(dio_fd, GPIOWRITE, &req);
}

BARE WRAPPER TO WRITE A I2C BYTE USING THE
KERNEL

void i2c_write(int addr, int reg, int data)
{
 int file = open("/dev/i2c-0", O_RDWR);
 ioctl(file, I2C_SLAVE, addr);
 i2c_smbus_write_byte_data(file, reg, data);
 close(file);
}

SPI modes

PROTOCOLS : 2. SERIAL (RS232, RS485, RS422)

• Standardized Point-to Point data transfer protocol. Historically used for
line printers and modems, but now generically used for industrial
automation systems, scientifc lab equipment, managed network equipment,
embedded computing.

• Easy to add to a standard laptop using USB-to-serial converter. Common
interface is the canonical 9-pin D-Sub connector.

• Requires very little supporting software (screen, minicom, ‘import serial’)

PROTOCOLS : 3. CAN BUS

• Controller Area Network

• 2-wire robust vehicle bus standard used to connect many disparate
(microcontroller) systems without a host controller or computer

• Your car runs on CAN!

• For observatories, power systems tend to use CAN (solar panel controllers, peak
power trackers, generators, wavesculptors, wind turbines, etc…)4

NETWORK SOCKET SERVERS

• Access to your hardware from anywhere
(internet of things…)

• The entire Internet is just a pile of socket
servers

• Example of email sending, http server, etc.

• Example Python and C implementations for
clients, servers

• Examples of use

OTHER GLUE LOGIC EXAMPLES: INDI

• Instrument Neutral Distributed Interface; see indilib.org

• INDI drivers advertise their capabilities by XML; an INDI Server collects them for presentation to
clients

• GUIs for INDI servers can be self-described! This has to be seen to be believed.

	Slide 1
	General Outline
	Philosophy
	Slide 4
	Architecture
	Slide 6
	Protocols : 1. I2C and SPI
	Bare Wrapper to SET a PIN STATE using GPIO
	Bare Wrapper to write a I2C byte using the kernel
	Slide 10
	Protocols : 2. Serial (RS232, Rs485, RS422)
	Protocols : 3. CAN bus
	Slide 13
	Network Socket Servers
	Other Glue logic examples: INDI
	Slide 16

