
Coding Principles and Style
Things you should do but probably don’t

(and probably won’t)

What is code style?

What is code style?
• The appearance: good, bad, ugly

• Formatting

• Layout

• Organization

• Conventions

• “Grammar”

White Space
• Indentation

• Alignment

• New lines

• Empty lines

• Spaces

• Spaces vs Tabs

while (1) {
 static struct option long_options[] =
 {
 {"verbose", no_argument, 0, 'v'},
 {"algorithm", required_argument, 0, 'a'},
 {"help", no_argument, 0, 'h'},
 {0, 0, 0, 0}
 };

 c = getopt_long (argc, argv, "vta:b", long_options, &option_index);

 if (c == -1) {
 break;
 }

 switch (c) {
 case 'v':
 verbose_flag = 1;
 break;
 case 'a':
 algorithm = optarg;
 break;
 case 'h':
 PrintHelp();
 break;
 default:
 abort();
 }
}

• All caps

• No caps

• First letter

• CamelCase

• camelCase

Capitalization

DROP TABLE IF EXISTS books;
CREATE TABLE books(
 number INT,
 title TEXT,
 isbn TEXT,
 publicationDate DATE,
 numPages INT,
 PRIMARY KEY(number)
);

Naming Conventions

• Meaningful names

• Short names

• Long names

• Single letters

• Nonsense

int Get_A_Random_Number() {

 randy = new Random();

 for(i=0; i<0; i++) {
 temp = randy.next();
 sum = temp + sum;
 }

 x = 10;

 randomNumber = sum + x;

 return randomNumber;
}

Comments

• Many different ways to
write comments

• Block style

• Before line

• Inline

• Afterline

/**
 * Function chooses a random move for the computer player
 * @param
 * @return the board position chosen by the computer
 */
public int computerMove() {

 //make a random generator
 Random r = new Random();

 while(true) {
 int randNum = r.nextInt(9); //get a random number

 if (board[randNum] == 0) {
 board[randNum] = 2;
 return randNum;
 //return the random number if valid
 }
 }
}

What is correct?

• Style is personal

• As long as its clear and readable

• If nothing else, be consistent

• Please yourself, please the audience

• Whatever you do is correct and everyone else is wrong

Style Guides

• A guide to proper style

• Nearly every language has one(or multiple)

• Written by language creators, enthusiasts, companies etc

• May be required to adhere if part of larger project or collaboration

C++ Horizontal Whitespace According to Google
if (b) { // Space after the keyword in conditions and loops.
} else { // Spaces around else.
}
while (test) {} // There is usually no space inside parentheses.
switch (i) {
for (int i = 0; i < 5; ++i) {
// Loops and conditions may have spaces inside parentheses, but this
// is rare. Be consistent.
switch (i) {
if (test) {
for (int i = 0; i < 5; ++i) {
// For loops always have a space after the semicolon. They may have a space
// before the semicolon, but this is rare.
for (; i < 5 ; ++i) {
 ...

// Range-based for loops always have a space before and after the colon.
for (auto x : counts) {
 ...
}
switch (i) {
 case 1: // No space before colon in a switch case.
 ...
 case 2: break; // Use a space after a colon if there's code after it.

Coding Principles

Coding Principles

• Ideas

• Guidelines

• Rules

• Ethics

Code Reuse and Libraries

• Never write new code if you don’t have to

• Chances are somebody has already done it, Google it

• Use libraries, its better than anything you’ll write

DRY

• Don’t Repeat Yourself

• No more copypasta

• Modularize your code

• Rule of Three: If you used it three
times, put it in a module

Modularity

• Organize code into independent, interchangeable modules

• Functions, structures, objects etc

• Building blocks to make something bigger

• Universal and extendable

YAGNI

• You Aren’t Going To Need It

• “Always implement things when you actually need them, never when you
just foresee that you need them” - Ron Jeffries

• Don’t waste time writing code that you may not need and will only
complicate things

KISS

• Keep It Simple Stupid

• Start with the simplest thing that
could possibly work

Generic Progamming & Polymorphism

• Write code to work no matter what

• Account for all possible uses

• Weak typing and abstraction

• Envision each function as a Black Box

SOLID for OO

• Single Responsibility Principle

• Open/Closed Principle

• Liskov Substitution Principle

• Interface Segregation Principle

• Dependency Inversion Principle

Single Responsibility Principle

• Each module should only have a single
functionality

• “A class should only have one reason to
change” - Robert C Martin

Open/Closed Principle

• “Software entities (classes, modules, functions, etc.) should be open for
extension, but closed for modification” - Bertrand Meyer

• Write code that doesn’t have to be changed when the requirements
change

Open/Closed Example
• Have a function that calculates area of rectangle

public class Rectangle
{
 public double Width { get; set; }
 public double Height { get; set; }
}

Open/Closed Example
• Write a function which computes total area of a bunch of rectangles

public class AreaCalculator
{
 public double Area(Rectangle[] shapes)
 {
 double area = 0;
 foreach (var shape in shapes)
 {
 area += shape.Width*shape.Height;
 }

 return area;
 }
}

Open/Closed Example
• Now expand it to do circles too, then for trapezoids ad infinitum

public double Area(object[] shapes)
{
 double area = 0;
 foreach (var shape in shapes)
 {
 if (shape is Rectangle)
 {
 Rectangle rectangle = (Rectangle) shape;
 area += rectangle.Width*rectangle.Height;
 }
 else
 {
 Circle circle = (Circle)shape;
 area += circle.Radius * circle.Radius * Math.PI;
 }
 }

 return area;
}

Open/Closed Example
• Or write it better from the start

public abstract class Shape
{
 public abstract double Area();
}

public class Rectangle : Shape
{
 public double Width { get; set; }
 public double Height { get; set; }
 public override double Area()
 {
 return Width*Height;
 }
}

public class Circle : Shape
{
 public double Radius { get; set; }
 public override double Area()
 {
 return Radius*Radius*Math.PI;
 }
}

public double Area(Shape[] shapes)
{
 double area = 0;
 foreach (var shape in shapes)
 {
 area += shape.Area();
 }

 return area;
}

Liskov Substitution Principle

• If object S is a subtype of object T,
then objects of type T can be
replaced by objects of type S
without breaking anything

• New subtypes must extend
behavior without modifying original

Liskov Substitution Example
• Imagine a class Rectangle and subclass Square

• Square breaks the functionality of Rectangle without extending it

class Rectangle {
 int width;
 int height;

 public void setWidth(int w){
 width = w;
 }

 public void setHeight(int h){
 height = h;
 }

 public int getArea(){
 return width * height;
 }
}

class Square extends Rectangle {
 public void setWidth(int w){
 width = w;
 height = w;
 }

 public void setHeight(int h){
 width = h;
 height = h;
 }
}

Interface Segregation Principle

• No client should be forced to depend on methods it doesn’t use

• Split large interfaces into smaller ones

• If you only want to eat food, you shouldn’t have to set the table first

• Xerox example

*An interface is a list of methods that a given class must implement

Dependency Inversion Principle
• “High-level modules should not depend

on low-level modules. Both should
depend on abstractions.”

• “Abstractions should not depend on
details. Details should depend on
abstractions.”

• Make code modules depend on
concepts(interfaces) instead of each other

• e.g. an outlet has some connections, we
can connect them however we please

Exception Handling
• Programmatically resolve errors instead

of crashing

• Resolve error and continue execution

• Print meaningful error messages

• Even define and throw your own errors

• Most languages have built-in exception
handling, you just have to use it

public void initialize() {
 try {
 loadRoomConfig();
 loadBoardConfig();
 calcAdjacencies();
 loadConfigFiles();
 } catch (BadConfigFormatException e) {
 e.getMessage();
 } catch (FileNotFoundException e){
 e.getMessage();
 } catch (Exception e){
 e.getMessage();
 }

 dealCards();
}

Test-Driven Development
• Define parameters and write failing tests

• Write code to pass tests

• Periodically run tests during development to ensure no regression

• Use testing libraries such as JUnit(Java), googletest(C++), PyUnit(Python)

//Tests adjacency list for cell in the top left corner of board
@Test
public void testAdjacencyTopLeft(){
 BoardCell cell = board.getCell(0,0);
 LinkedList<BoardCell> testList = board.getAdjList(cell);
 assertTrue(testList.contains(board.getCell(1, 0)));
 assertTrue(testList.contains(board.getCell(0, 1)));
 assertEquals(2, testList.size());
}

Documentation

• Document your code

• Comment throughout your code

• Explain what it does and how it works

• Write README’s and describe the Black Box functionality

Refactor

• Periodically refactor your code

• You’ll understand the project better after you write it

• Clean up garbage code

• Rename things

• Reorganize and streamline

Take Home Message

• Keep these in mind when coding

• Write better code now and forget about it later

• Don’t write fragile code

• Write code that is easy to use, understand and extend

• Goal: once a piece of code has been finished, you should have to touch it
again

