Coding Principles and Style

Things you should do but probably don't
(and probably won’t)



What is code style?

HAIR:
I woke up Like Ehis,

GLASSES:

1f glasses, Warby Parker.
If sumglasses, RayBan,

TEE:

A b=shirt from
awnocther startu
that implements
our API, *Can be
exchanged for a
buttown up own
Tkursdavs.

MESSENGER BAG:

Though practical

and smart,

messenqger bags \
should be labeled as \
to not qet
accideutaltj

s«oapped abk a
company "‘O\PPj hour,
*Same applies for
Swiss Arm

backfmcks.

JEANS:

These dark wash jeans
are void of dirt or

any evidence of
outdoor use,

SNEAKERS:

These bad bo:,s broadcast
both your financial
success and abilitj to
skill keep it real.

FACIAL HAIR:

Varying degrees of beard
growth, It is entirel
enviable to 9o full geqrd.

HOODIE:
Hoodie branded with the

tech company you work
for. Subtly says "I matter."

WEARABLES:

A Pebble or
FitBit, tracking
chr steps from
he Mission to
SOMA,

Fixie, because engineers
don't need qears.




What is code style?

The appearance: good, bad, ugly
Formatting

Layout

Organization

Conventions

“Grammar”



White Space

while
static struct option long options[] =

{

. {"verbose", no argument, Jy, vt by
Indentatlon {"algorithm", required argument, o, 'a'},
{"help", no argument, O, 'h'},
{0, 0, 0, 0}
: b
Alignment
c = getopt long (argc, argv, "vta:b", long options, &option index);

if (¢ == -1) {

NeW |IneS break;
}

. switch (c) {
Empty lines case 'v':
verbose flag = 1;
break;
case 'a':
SpaCeS algorithm = optarg;
break;
case 'h':
PrintHelp () ;
Spaces vs Tabs break;
default:
abort () ;



Capitalization

All caps

DROP TABLE IF EXISTS books;

No caps CREATE TABLE books (
number INT,
title TEXT,

First letter Lepn TRE
publicationDate DATE,
numPages INT,

PRIMARY KEY ( number )

CamelCase ) ;

camelCase



Naming Conventions

Meaningful names int Get A Random Number () {
randy = new Random() ;
Short names for ( i=0; i<0; i++ ) {
temp = randy.next () ;
sum = temp + sum;
Long names ;
x = 10;
S|ng|e |etterS randomNumber = sum + Xx;

return randomNumber;

Nonsense }



Comments

/**

* Function chooses a random move for the computer plaver
* (@param

* @return the board position chosen by the computer

Many different ways to

write comments R

public int computerMove () {

//make a random generator
BIOCk SW|e Random r = new Random{() ;
| while (true) {
Before ||ne int randNum = r.nextInt(9); //get a random number
1f (board[randNum] == 0) {

Inline board[randNum] = 2Z;

return randNum;
//return the random number if valid

Afterline }



What is correct?

Style is personal

As long as Its clear and readable

If nothing else, be consistent

Please yourself, please the audience

Whatever you do is correct and everyone else is wrong



Style Guides

Google

A guide to proper style

Nearly every language has one(or multiple)
Written by language creators, enthusiasts, companies etc

May be required to adhere if part of larger project or collaboration




C++ Horizontal Whitespace According to Google

if (b)) { // Space after the keyword in conditions and loops.
} else { // Spaces around else.

}
while (test

)
switch (1) {
for (int 1 = 0; 1 < 5; ++1) {

// Loops and conditions may have spaces inside parentheses, but this

{} // There is usually no space inside parentheses.

// 1s rare. Be consistent.

switch ( i1 ) {

1if ( test ) {

for ( int 1 = 0; 1 < 5; ++1i ) {

// For loops always have a space after the semicolon. They may have a space

// before the semicolon, but this is rare.
for ( ; 1 <5 ; ++1) {

// Range-based for loops always have a space before and after the colon.
for (auto x : counts) {

}
switch (1) {
case 1: // No space before colon in a switch case.

case 2: break; // Use a space after a colon if there's code after it.



Coding Principles




Coding Principles

e |deas

e (Guidelines

e Rules

e Ethics



Code Reuse and Libraries

 Never write new code if you don’t have to

 Chances are somebody has already done it, Google it

 Use libraries, its better than anything you’ll write

‘. boost




Don’t Repeat Yourself
No more copypasta

Modularize your code

Rule of Three: If you used it three
times, put it in a module



Modularity

Organize code into independent, interchangeable modules
Functions, structures, objects etc
Building blocks to make something bigger

Universal and extendable




YAGNI

* You Aren’t Going To Need It

 “Always implement things when you actually need them, never when you
just foresee that you need them” - Ron Jeffries

 Don’t waste time writing code that you may not need and will only
complicate things



KISS

o Keep It Simple Stupid

e Start with the simplest thing that
could possibly work




Generic Progamming & Polymorphism

» X = undefined
e Write code to work no matter what undefined
Math.sin(x)

 Account for all possible uses
 Weak typing and abstraction

e Envision each function as a Black Box




SOLID for OO

Single Responsibility Principle
Open/Closed Principle

Liskov Substitution Principle
Interface Segregation Principle

Dependency Inversion Principle



Single Responsibility Principle

 Each module should only have a single
functionality

 “A class should only have one reason to
change” - Robert C Martin

SINGLE RESPONSIBILITY PRINC

Just Because You Can, Doesn't Mean You Should

LE



Open/Closed Principle

o “Software entities (classes, modules, functions, etc.) should be open for
extension, but closed for modification” - Bertrand Meyer

 Write code that doesn’t have to be changed when the requirements
change



Open/Closed Example

 Have a function that calculates area of rectangle

public class Rectangle

{
public double Width { get; set; }

public double Height { get; set; }



Open/Closed Example

e Write a function which computes total area of a bunch of rectangles

public class AreaCalculator

{
public double Area (Rectangle[] shapes)

{

double area = 0O;
foreach (var shape i1n shapes)

{
area += shape.Width*shape.Height;

J

return area;



Open/Closed Example

 Now expand it to do circles too, then for trapezoids ad infinitum

public double Area(object[] shapes)
{

double area = 0O;
foreach (var shape 1n shapes)

{
1f (shape 1s Rectangle)

{

Rectangle rectangle = (Rectangle) shape;
area += rectangle.Width*rectangle.Height;

J

else

{
Circle circle = (Circle)shape;
area += circle.Radius * circle.Radius * Math.PI;

J

return area;



Open/Closed Example

public abstract class Shape
{

e Or write it better from the start public abstract double Area();
}

public class Rectangle : Shape

public double Area (Shape[] shapes) {

{ public double Width { get; set; }

public double Height { get; set; }
public override double Area ()

{

double area = 0O;
foreach (var shape i1n shapes)

{ return Width*Height;

area += shape.Areal();

]
} }

return area; public class Circle : Shape

{
public double Radius { get; set; }

public override double Area ()

{

return Radius*Radius*Math.PI;

J



Liskov Substitution Principle

e |f object S is a subtype of object T,
then objects of type T can be
replaced by objects of type S
without breaking anything

 New subtypes must extend
behavior without modifying original

LISKOV SUBSTITUTION PRINCIPLE

If It Looks Like A Duck, Quacks Like A Duck, But Needs Batteries - You
Probably Have The Wrong Abstraction



Liskov Substitution Example

* |Imagine a class Rectangle and subclass Square

e Square breaks the functionality of Rectangle without extending it

class Rectangle {

%nt Wiéth; class Square extends Rectangle {
int height; public void setWidth (int w) {
_ _ | _ width = w;
public void setWidth (int w) { height = w;
width = w; )
J
_ _ | _ public void setHeight (1nt h) {
publ}c void setHeight (int h) { width = h:
neight = n; height = h;

} }
}
public int getArea () {
return width * height;

J
J



Interface Segregation Principle

No client should be forced to depend on methods it doesn’t use
Split large interfaces into smaller ones
If you only want to eat food, you shouldn’t have to set the table first

Xerox example

*An interface is a list of methods that a given class must implement



Dependency Inversion Principle

 “High-level modules should not depend
on low-level modules. Both should
depend on abstractions.”

 “Abstractions should not depend on
detalils. Details should depend on
abstractions.”

 Make code modules depend on
concepts(interfaces) instead of each other

* e.g. an outlet has some connections, we
can connect them however we please

DEPENDENCY INVERSION PRINCIPLE

Would You Solder A Lamp Directly To The Electrical Wiring In A Wall?




Programmatically resolve errors instead
of crashing

Resolve error and continue execution
Print meaningful error messages
Even define and throw your own errors

Most languages have built-in exception
handling, you just have to use It

J

Exception Handling

public void initialize() {

try {
loadRoomConfig () ;
loadBoardConfig ()
calcAdjacencies ()
loadConfigFiles ()

} catch (BadConfigF
e.getMessage () ;

} catch (FileNotFoundException e) {
e.getMessage () ;

} catch (Exception e) {
e.getMessage () ;

J

°
4
°
4
°
4

ormatException e)

dealCards () ;

{



Test-Driven Development

Define parameters and write failing tests
Write code to pass tests
Periodically run tests during development to ensure no regression

Use testing libraries such as JUnit(Java), googletest(C++), PyUnit(Python)

//Tests adjacency list for cell in the top left corner of board
@Test
public void testAdjacencyTopleft () {
BoardCell cell = board.getCell (0,0);
LinkedList<BoardCell> testList = board.getAdjList (cell);
assertTrue (testlList.contains (board.getCell (1, 0)));
assertTrue (testlList.contains (board.getCell (0, 1)));
assertEquals (2, testlist.sizel());



Documentation

Document your code
Comment throughout your code
Explain what it does and how it works

Write README’s and describe the Black Box functionality



Refactor

Periodically refactor your code

You'll understand the project better after you write it
Clean up garbage code

Rename things

Reorganize and streamline



Take Home Message

Keep these In mind when coding

Write better code now and forget about it later

Don’t write fragile code

Write code that Is easy to use, understand and extend

Goal: once a piece of code has been finished, you should have to touch it
again



